These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 34665940)

  • 1. High-efficiency delivery of CRISPR-Cas9 by engineered probiotics enables precise microbiome editing.
    Neil K; Allard N; Roy P; Grenier F; Menendez A; Burrus V; Rodrigue S
    Mol Syst Biol; 2021 Oct; 17(10):e10335. PubMed ID: 34665940
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Hamilton TA; Joris BR; Shrestha A; Browne TS; Rodrigue S; Karas BJ; Gloor GB; Edgell DR
    ACS Synth Biol; 2023 Dec; 12(12):3578-3590. PubMed ID: 38049144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Type IV Pilus of Plasmid TP114 Displays Adhesins Conferring Conjugation Specificity and Is Important for DNA Transfer in the Mouse Gut Microbiota.
    Allard N; Neil K; Grenier F; Rodrigue S
    Microbiol Spectr; 2022 Apr; 10(2):e0230321. PubMed ID: 35293798
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering conjugative CRISPR-Cas9 systems for the targeted control of enteric pathogens and antibiotic resistance.
    Sheng H; Wu S; Xue Y; Zhao W; Caplan AB; Hovde CJ; Minnich SA
    PLoS One; 2023; 18(9):e0291520. PubMed ID: 37699034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conjugative Delivery of CRISPR-Cas9 for the Selective Depletion of Antibiotic-Resistant Enterococci.
    Rodrigues M; McBride SW; Hullahalli K; Palmer KL; Duerkop BA
    Antimicrob Agents Chemother; 2019 Nov; 63(11):. PubMed ID: 31527030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Midbiotics: conjugative plasmids for genetic engineering of natural gut flora.
    Ruotsalainen P; Penttinen R; Mattila S; Jalasvuori M
    Gut Microbes; 2019; 10(6):643-653. PubMed ID: 30951393
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly efficient gene transfer in the mouse gut microbiota is enabled by the Incl
    Neil K; Allard N; Grenier F; Burrus V; Rodrigue S
    Commun Biol; 2020 Sep; 3(1):523. PubMed ID: 32963323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pathogen-Specific Bactericidal Method Mediated by Conjugative Delivery of CRISPR-Cas13a Targeting Bacterial Endogenous Transcripts.
    Song Z; Yu Y; Bai X; Jia Y; Tian J; Gu K; Zhao M; Zhou C; Zhang X; Wang H; Tang Y
    Microbiol Spectr; 2022 Aug; 10(4):e0130022. PubMed ID: 35950861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Editing the microbiome the CRISPR way.
    Ramachandran G; Bikard D
    Philos Trans R Soc Lond B Biol Sci; 2019 May; 374(1772):20180103. PubMed ID: 30905295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enterococcus faecalis CRISPR-Cas Is a Robust Barrier to Conjugative Antibiotic Resistance Dissemination in the Murine Intestine.
    Price VJ; McBride SW; Hullahalli K; Chatterjee A; Duerkop BA; Palmer KL
    mSphere; 2019 Jul; 4(4):. PubMed ID: 31341074
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving the Editing Efficiency of CRISPR-Cas9 by Reducing the Generation of Escapers Based on the Surviving Mechanism.
    Li Q; Sun M; Lv L; Zuo Y; Zhang S; Zhang Y; Yang S
    ACS Synth Biol; 2023 Mar; 12(3):672-680. PubMed ID: 36867054
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploiting heterologous and endogenous CRISPR-Cas systems for genome editing in the probiotic Clostridium butyricum.
    Zhou X; Wang X; Luo H; Wang Y; Wang Y; Tu T; Qin X; Su X; Bai Y; Yao B; Huang H; Zhang J
    Biotechnol Bioeng; 2021 Jul; 118(7):2448-2459. PubMed ID: 33719068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gene Therapy with CRISPR/Cas9 Coming to Age for HIV Cure.
    Soriano V
    AIDS Rev; 2017; 19(3):167-172. PubMed ID: 29019352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Portable CRISPR-Cas9
    Goh YJ; Barrangou R
    Appl Environ Microbiol; 2021 Feb; 87(6):. PubMed ID: 33397707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Delivery of CRISPR/Cas9 for therapeutic genome editing.
    Xu X; Wan T; Xin H; Li D; Pan H; Wu J; Ping Y
    J Gene Med; 2019 Jul; 21(7):e3107. PubMed ID: 31237055
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Delivery of CRISPR/Cas9 Plasmid DNA by Hyperbranched Polymeric Nanoparticles Enables Efficient Gene Editing.
    Xiu K; Saunders L; Wen L; Ruan J; Dong R; Song J; Yang D; Zhang J; Xu J; Chen YE; Ma PX
    Cells; 2022 Dec; 12(1):. PubMed ID: 36611948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeted Elimination of
    Li P; Wan P; Zhao R; Chen J; Li X; Li J; Xiong W; Zeng Z
    Infect Drug Resist; 2022; 15():1707-1716. PubMed ID: 35422639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoparticle-Based Delivery of CRISPR/Cas9 Genome-Editing Therapeutics.
    Givens BE; Naguib YW; Geary SM; Devor EJ; Salem AK
    AAPS J; 2018 Oct; 20(6):108. PubMed ID: 30306365
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploiting a conjugative CRISPR/Cas9 system to eliminate plasmid harbouring the mcr-1 gene from Escherichia coli.
    Dong H; Xiang H; Mu D; Wang D; Wang T
    Int J Antimicrob Agents; 2019 Jan; 53(1):1-8. PubMed ID: 30267758
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An efficient CRISPR/Cas9 platform for targeted genome editing in rose (Rosa hybrida).
    Wang C; Li Y; Wang N; Yu Q; Li Y; Gao J; Zhou X; Ma N
    J Integr Plant Biol; 2023 Apr; 65(4):895-899. PubMed ID: 36460630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.