These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. Preparation of cell culture scaffolds using polycaprolactone/quince seed mucilage. Allafchian A; Jalali SAH; Mousavi SE; Hosseini SS Int J Biol Macromol; 2020 Jul; 155():1270-1276. PubMed ID: 31726121 [TBL] [Abstract][Full Text] [Related]
9. Surface Engineered Biomimetic Inks Based on UV Cross-Linkable Wood Biopolymers for 3D Printing. Xu W; Zhang X; Yang P; Långvik O; Wang X; Zhang Y; Cheng F; Österberg M; Willför S; Xu C ACS Appl Mater Interfaces; 2019 Apr; 11(13):12389-12400. PubMed ID: 30844234 [TBL] [Abstract][Full Text] [Related]
10. Low Solids Emulsion Gels Based on Nanocellulose for 3D-Printing. Huan S; Ajdary R; Bai L; Klar V; Rojas OJ Biomacromolecules; 2019 Feb; 20(2):635-644. PubMed ID: 30240194 [TBL] [Abstract][Full Text] [Related]
11. 3D printable carboxylated cellulose nanocrystal-reinforced hydrogel inks for tissue engineering. Kumar A; I Matari IA; Han SS Biofabrication; 2020 Mar; 12(2):025029. PubMed ID: 32029691 [TBL] [Abstract][Full Text] [Related]
12. 3D bioprinting of dual-crosslinked nanocellulose hydrogels for tissue engineering applications. Monfared M; Mawad D; Rnjak-Kovacina J; Stenzel MH J Mater Chem B; 2021 Aug; 9(31):6163-6175. PubMed ID: 34286810 [TBL] [Abstract][Full Text] [Related]
13. Highly tunable bioadhesion and optics of 3D printable PNIPAm/cellulose nanofibrils hydrogels. Sun X; Tyagi P; Agate S; McCord MG; Lucia LA; Pal L Carbohydr Polym; 2020 Apr; 234():115898. PubMed ID: 32070518 [TBL] [Abstract][Full Text] [Related]
14. Polymeric 3D scaffolds for tissue regeneration: Evaluation of biopolymer nanocomposite reinforced with cellulose nanofibrils. Campodoni E; Heggset EB; Rashad A; Ramírez-Rodríguez GB; Mustafa K; Syverud K; Tampieri A; Sandri M Mater Sci Eng C Mater Biol Appl; 2019 Jan; 94():867-878. PubMed ID: 30423774 [TBL] [Abstract][Full Text] [Related]
15. Bacterial cellulose nanofibers promote stress and fidelity of 3D-printed silk based hydrogel scaffold with hierarchical pores. Huang L; Du X; Fan S; Yang G; Shao H; Li D; Cao C; Zhu Y; Zhu M; Zhang Y Carbohydr Polym; 2019 Oct; 221():146-156. PubMed ID: 31227153 [TBL] [Abstract][Full Text] [Related]
16. Three-Dimensional Printed Cell Culture Model Based on Spherical Colloidal Lignin Particles and Cellulose Nanofibril-Alginate Hydrogel. Zhang X; Morits M; Jonkergouw C; Ora A; Valle-Delgado JJ; Farooq M; Ajdary R; Huan S; Linder M; Rojas O; Sipponen MH; Österberg M Biomacromolecules; 2020 May; 21(5):1875-1885. PubMed ID: 31992046 [TBL] [Abstract][Full Text] [Related]
17. 3D printed alginate-cellulose nanofibers based patches for local curcumin administration. Olmos-Juste R; Alonso-Lerma B; Pérez-Jiménez R; Gabilondo N; Eceiza A Carbohydr Polym; 2021 Jul; 264():118026. PubMed ID: 33910718 [TBL] [Abstract][Full Text] [Related]
18. 3D Printed Porous Cellulose Nanocomposite Hydrogel Scaffolds. Sultan S; Mathew AP J Vis Exp; 2019 Apr; (146):. PubMed ID: 31081812 [TBL] [Abstract][Full Text] [Related]
19. 3D printed scaffolds with gradient porosity based on a cellulose nanocrystal hydrogel. Sultan S; Mathew AP Nanoscale; 2018 Mar; 10(9):4421-4431. PubMed ID: 29451572 [TBL] [Abstract][Full Text] [Related]
20. Probing metal-carboxylate interactions in cellulose nanofibrils-based hydrogels using nonlinear oscillatory rheology. Song Y; Kim B; Park JD; Lee D Carbohydr Polym; 2023 Jan; 300():120262. PubMed ID: 36372514 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]