These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 34666132)
21. Transparent and Cell-Guiding Cellulose Nanofiber 3D Printing Bioinks. Radeke C; Pons R; Mihajlovic M; Knudsen JR; Butdayev S; Kempen PJ; Segeritz CP; Andresen TL; Pehmøller CK; Jensen TE; Lind JU ACS Appl Mater Interfaces; 2023 Jan; 15(2):2564-2577. PubMed ID: 36598781 [TBL] [Abstract][Full Text] [Related]
22. Cellulose Nanofibrils Filled Poly(Lactic Acid) Biocomposite Filament for FDM 3D Printing. Wang Q; Ji C; Sun L; Sun J; Liu J Molecules; 2020 May; 25(10):. PubMed ID: 32429191 [TBL] [Abstract][Full Text] [Related]
23. Improvement of cell deposition by self-absorbent capability of freeze-dried 3D-bioprinted scaffolds derived from cellulose material-alginate hydrogels. Li Z; Ramos A; Li MC; Li Z; Bhatta S; Jeyaseelan A; Li Y; Wu Q; Yao S; Xu J Biomed Phys Eng Express; 2020 May; 6(4):045009. PubMed ID: 33444270 [TBL] [Abstract][Full Text] [Related]
25. In situ mineralization of nano-hydroxyapatite on bifunctional cellulose nanofiber/polyvinyl alcohol/sodium alginate hydrogel using 3D printing. Abouzeid RE; Khiari R; Salama A; Diab M; Beneventi D; Dufresne A Int J Biol Macromol; 2020 Oct; 160():538-547. PubMed ID: 32470581 [TBL] [Abstract][Full Text] [Related]
26. 3D printing of a bio-based ink made of cross-linked cellulose nanofibrils with various metal cations. Mietner JB; Jiang X; Edlund U; Saake B; Navarro JRG Sci Rep; 2021 Mar; 11(1):6461. PubMed ID: 33742068 [TBL] [Abstract][Full Text] [Related]
27. Depletion Flocculation of High Internal Phase Pickering Emulsion Inks: A Colloidal Engineering Approach to Develop 3D Printed Porous Scaffolds with Tunable Bioactive Delivery. Shahbazi M; Jäger H; Huc-Mathis D; Asghartabar Kashi P; Ettelaie R; Sarkar A; Chen J ACS Appl Mater Interfaces; 2024 Aug; 16(33):43430-43450. PubMed ID: 39110913 [TBL] [Abstract][Full Text] [Related]
28. Biomimetic Mineralization of Three-Dimensional Printed Alginate/TEMPO-Oxidized Cellulose Nanofibril Scaffolds for Bone Tissue Engineering. Abouzeid RE; Khiari R; Beneventi D; Dufresne A Biomacromolecules; 2018 Nov; 19(11):4442-4452. PubMed ID: 30301348 [TBL] [Abstract][Full Text] [Related]
29. Lignin-Based Direct Ink Printed Structural Scaffolds. Jiang B; Yao Y; Liang Z; Gao J; Chen G; Xia Q; Mi R; Jiao M; Wang X; Hu L Small; 2020 Aug; 16(31):e1907212. PubMed ID: 32597027 [TBL] [Abstract][Full Text] [Related]
30. Utilizing the Natural Composition of Brown Seaweed for the Preparation of Hybrid Ink for 3D Printing of Hydrogels. Berglund L; Rakar J; Junker JPE; Forsberg F; Oksman K ACS Appl Bio Mater; 2020 Sep; 3(9):6510-6520. PubMed ID: 35021782 [TBL] [Abstract][Full Text] [Related]
31. Photocross-Linkable and Shape-Memory Biomaterial Hydrogel Based on Methacrylated Cellulose Nanofibres. Brusentsev Y; Yang P; King AWT; Cheng F; Cortes Ruiz MF; Eriksson JE; Kilpeläinen I; Willför S; Xu C; Wågberg L; Wang X Biomacromolecules; 2023 Aug; 24(8):3835-3845. PubMed ID: 37527286 [TBL] [Abstract][Full Text] [Related]
32. Biomimetic Inks Based on Cellulose Nanofibrils and Cross-Linkable Xylans for 3D Printing. Markstedt K; Escalante A; Toriz G; Gatenholm P ACS Appl Mater Interfaces; 2017 Nov; 9(46):40878-40886. PubMed ID: 29068193 [TBL] [Abstract][Full Text] [Related]
33. High mechanical strength gelatin composite hydrogels reinforced by cellulose nanofibrils with unique beads-on-a-string morphology. Liu Q; Liu J; Qin S; Pei Y; Zheng X; Tang K Int J Biol Macromol; 2020 Dec; 164():1776-1784. PubMed ID: 32791281 [TBL] [Abstract][Full Text] [Related]
34. Direct-ink-writable nanocellulose ternary hydrogels via one-pot gelation with alginate and calcium montmorillonite. Li H; Xia Y; Guo R; Wang H; Wang X; Yang Z; Zhao Y; Li J; Wang C; Huan S Carbohydr Polym; 2024 Nov; 344():122494. PubMed ID: 39218538 [TBL] [Abstract][Full Text] [Related]
35. Injectable cell-laden hydrogels fabricated with cellulose and chitosan nanofibers for bioprinted liver tissues. Zhang Z; Li Q; Hatakeyama M; Kitaoka T Biomed Mater; 2023 May; 18(4):. PubMed ID: 37168003 [TBL] [Abstract][Full Text] [Related]
36. 3D printed hydrogels with oxidized cellulose nanofibers and silk fibroin for the proliferation of lung epithelial stem cells. Huang L; Yuan W; Hong Y; Fan S; Yao X; Ren T; Song L; Yang G; Zhang Y Cellulose (Lond); 2021; 28(1):241-257. PubMed ID: 33132545 [TBL] [Abstract][Full Text] [Related]
37. Chondroinductive Alginate-Based Hydrogels Having Graphene Oxide for 3D Printed Scaffold Fabrication. Olate-Moya F; Arens L; Wilhelm M; Mateos-Timoneda MA; Engel E; Palza H ACS Appl Mater Interfaces; 2020 Jan; 12(4):4343-4357. PubMed ID: 31909967 [TBL] [Abstract][Full Text] [Related]
38. Single-Component Cellulose Acetate Sulfate Hydrogels for Direct Ink Writing 3D Printing. Park S; Sharmin T; Cho SM; Kelley SS; Shirwaiker RA; Park S Biomacromolecules; 2024 Sep; 25(9):5889-5901. PubMed ID: 39166779 [TBL] [Abstract][Full Text] [Related]
39. Optimization of whey protein isolate-quince seed mucilage complex coacervation. Ghadermazi R; Khosrowshahi Asl A; Tamjidi F Int J Biol Macromol; 2019 Jun; 131():368-377. PubMed ID: 30872060 [TBL] [Abstract][Full Text] [Related]
40. 3D printing of shape-morphing and antibacterial anisotropic nanocellulose hydrogels. Fourmann O; Hausmann MK; Neels A; Schubert M; Nyström G; Zimmermann T; Siqueira G Carbohydr Polym; 2021 May; 259():117716. PubMed ID: 33673992 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]