These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 34666132)
41. Rheological behavior and particle alignment of cellulose nanocrystal and its composite hydrogels during 3D printing. Ma T; Lv L; Ouyang C; Hu X; Liao X; Song Y; Hu X Carbohydr Polym; 2021 Feb; 253():117217. PubMed ID: 33278981 [TBL] [Abstract][Full Text] [Related]
42. Stimuli-responsive glucuronoxylan polysaccharide from quince seeds for biomedical, food packaging, and environmental applications. Fatima Z; Fatima S; Muhammad G; Hussain MA; Raza MA; Amin M; Majeed A Int J Biol Macromol; 2024 Jul; 273(Pt 2):133016. PubMed ID: 38876235 [TBL] [Abstract][Full Text] [Related]
43. Biological activity of multicomponent bio-hydrogels loaded with tragacanth gum. Polez RT; Morits M; Jonkergouw C; Phiri J; Valle-Delgado JJ; Linder MB; Maloney T; Rojas OJ; Österberg M Int J Biol Macromol; 2022 Aug; 215():691-704. PubMed ID: 35777518 [TBL] [Abstract][Full Text] [Related]
44. Tailor-made conductive inks from cellulose nanofibrils for 3D printing of neural guidelines. Kuzmenko V; Karabulut E; Pernevik E; Enoksson P; Gatenholm P Carbohydr Polym; 2018 Jun; 189():22-30. PubMed ID: 29580403 [TBL] [Abstract][Full Text] [Related]
45. Cellulose nanocrystals as support nanomaterials for dual droplet-based freeform 3D printing. Yoon HS; Yang K; Kim YM; Nam K; Roh YH Carbohydr Polym; 2021 Nov; 272():118469. PubMed ID: 34420728 [TBL] [Abstract][Full Text] [Related]
46. 3D printable and injectable lactoferrin-loaded carboxymethyl cellulose-glycol chitosan hydrogels for tissue engineering applications. Janarthanan G; Tran HN; Cha E; Lee C; Das D; Noh I Mater Sci Eng C Mater Biol Appl; 2020 Aug; 113():111008. PubMed ID: 32487412 [TBL] [Abstract][Full Text] [Related]
47. Wood-based nanocellulose and bioactive glass modified gelatin-alginate bioinks for 3D bioprinting of bone cells. Ojansivu M; Rashad A; Ahlinder A; Massera J; Mishra A; Syverud K; Finne-Wistrand A; Miettinen S; Mustafa K Biofabrication; 2019 Apr; 11(3):035010. PubMed ID: 30754034 [TBL] [Abstract][Full Text] [Related]
48. Crosslinked porous three-dimensional cellulose nanofibers-gelatine biocomposite scaffolds for tissue regeneration. Mirtaghavi A; Baldwin A; Tanideh N; Zarei M; Muthuraj R; Cao Y; Zhao G; Geng J; Jin H; Luo J Int J Biol Macromol; 2020 Dec; 164():1949-1959. PubMed ID: 32791272 [TBL] [Abstract][Full Text] [Related]
49. 3D printing of high-strength chitosan hydrogel scaffolds without any organic solvents. Zhou L; Ramezani H; Sun M; Xie M; Nie J; Lv S; Cai J; Fu J; He Y Biomater Sci; 2020 Sep; 8(18):5020-5028. PubMed ID: 32844842 [TBL] [Abstract][Full Text] [Related]
50. Design of drug-loaded 3D printing biomaterial inks and tailor-made pharmaceutical forms for controlled release. Olmos-Juste R; Guaresti O; Calvo-Correas T; Gabilondo N; Eceiza A Int J Pharm; 2021 Nov; 609():121124. PubMed ID: 34597726 [TBL] [Abstract][Full Text] [Related]
52. Pickering emulgels reinforced with host-guest supramolecular inclusion complexes for high fidelity direct ink writing. Pang B; Ajdary R; Antonietti M; Rojas O; Filonenko S Mater Horiz; 2022 Feb; 9(2):835-840. PubMed ID: 34985072 [TBL] [Abstract][Full Text] [Related]
53. Unidirectional Swelling of Dynamic Cellulose Nanofibril Networks: A Platform for Tunable Hydrogels and Aerogels with 3D Shapeability. Benselfelt T; Wågberg L Biomacromolecules; 2019 Jun; 20(6):2406-2412. PubMed ID: 31050412 [TBL] [Abstract][Full Text] [Related]
54. 3D Printing of Self-Assembling Nanofibrous Multidomain Peptide Hydrogels. Farsheed AC; Thomas AJ; Pogostin BH; Hartgerink JD Adv Mater; 2023 Mar; 35(11):e2210378. PubMed ID: 36604310 [TBL] [Abstract][Full Text] [Related]
55. Direct ink writing of biocompatible chitosan/non-isocyanate polyurethane/cellulose nanofiber hydrogels for wound-healing applications. Laurén I; Farzan A; Teotia A; Lindfors NC; Seppälä J Int J Biol Macromol; 2024 Feb; 259(Pt 2):129321. PubMed ID: 38218294 [TBL] [Abstract][Full Text] [Related]
56. Physical, barrier and antioxidant properties of a novel plasticized edible film from quince seed mucilage. Jouki M; Yazdi FT; Mortazavi SA; Koocheki A Int J Biol Macromol; 2013 Nov; 62():500-7. PubMed ID: 24076197 [TBL] [Abstract][Full Text] [Related]
57. Polyion complex hydrogels from chemically modified cellulose nanofibrils: Structure-function relationship and potential for controlled and pH-responsive release of doxorubicin. Hujaya SD; Lorite GS; Vainio SJ; Liimatainen H Acta Biomater; 2018 Jul; 75():346-357. PubMed ID: 29885527 [TBL] [Abstract][Full Text] [Related]
58. 3D Printing Method for Tough Multifunctional Particle-Based Double-Network Hydrogels. Zhao D; Liu Y; Liu B; Chen Z; Nian G; Qu S; Yang W ACS Appl Mater Interfaces; 2021 Mar; 13(11):13714-13723. PubMed ID: 33720679 [TBL] [Abstract][Full Text] [Related]
59. Cation-induced hydrogels of cellulose nanofibrils with tunable moduli. Dong H; Snyder JF; Williams KS; Andzelm JW Biomacromolecules; 2013 Sep; 14(9):3338-45. PubMed ID: 23919541 [TBL] [Abstract][Full Text] [Related]
60. Eucalyptus bleached kraft pulp-ionic liquid inks for 3D printing of ionogels and hydrogels. Hopson C; Rigual V; Alonso MV; Oliet M; Rodriguez F Carbohydr Polym; 2023 Aug; 313():120897. PubMed ID: 37182980 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]