These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 34666132)
61. Loose Pre-Cross-Linking Mediating Cellulose Self-Assembly for 3D Printing Strong and Tough Biomimetic Scaffolds. Guo J; Li Q; Zhang R; Li B; Zhang J; Yao L; Lin Z; Zhang L; Cao X; Duan B Biomacromolecules; 2022 Mar; 23(3):877-888. PubMed ID: 35142493 [TBL] [Abstract][Full Text] [Related]
62. Quince seed mucilage-based scaffold as a smart biological substrate to mimic mechanobiological behavior of skin and promote fibroblasts proliferation and h-ASCs differentiation into keratinocytes. Izadyari Aghmiuni A; Heidari Keshel S; Sefat F; Akbarzadeh Khiyavi A Int J Biol Macromol; 2020 Jan; 142():668-679. PubMed ID: 31622718 [TBL] [Abstract][Full Text] [Related]
63. Nano-hydroxyapatite incorporated quince seed mucilage bioscaffolds for osteogenic differentiation of human adipose-derived mesenchymal stem cells. Cetin Genc C; Yilmaz HD; Karaca B; Kiran F; Arslan YE Int J Biol Macromol; 2022 Jan; 195():492-505. PubMed ID: 34921891 [TBL] [Abstract][Full Text] [Related]
64. Mimosa/quince seed mucilage-co-poly (methacrylate) hydrogels for controlled delivery of capecitabine: Simulation studies, characterization and toxicological evaluation. Yasmin T; Mahmood A; Sarfraz RM; Rehman U; Boublia A; Alkahtani AM; Albakri GS; Ijaz H; Ahmed S; Harron B; Albrahim M; Elboughdiri N; Yadav KK; Benguerba Y Int J Biol Macromol; 2024 Aug; 275(Pt 1):133468. PubMed ID: 38945341 [TBL] [Abstract][Full Text] [Related]
65. High-intensity ultrasound-assisted formation of cellulose nanofiber scaffold with low and high lignin content and their cytocompatibility with gingival fibroblast cells. Huerta RR; Silva EK; Ekaette I; El-Bialy T; Saldaña MDA Ultrason Sonochem; 2020 Jun; 64():104759. PubMed ID: 31948850 [TBL] [Abstract][Full Text] [Related]
66. 3D Printing of Cellulase-Laden Cellulose Nanofiber/Chitosan Hydrogel Composites: Towards Tissue Engineering Functional Biomaterials with Enzyme-Mediated Biodegradation. Tamo AK; Tran TA; Doench I; Jahangir S; Lall A; David L; Peniche-Covas C; Walther A; Osorio-Madrazo A Materials (Basel); 2022 Sep; 15(17):. PubMed ID: 36079419 [TBL] [Abstract][Full Text] [Related]
67. Simulations of 3D bioprinting: predicting bioprintability of nanofibrillar inks. Göhl J; Markstedt K; Mark A; Håkansson K; Gatenholm P; Edelvik F Biofabrication; 2018 Jun; 10(3):034105. PubMed ID: 29809162 [TBL] [Abstract][Full Text] [Related]
68. Bioactive gyroid scaffolds formed by sacrificial templating of nanocellulose and nanochitin hydrogels as instructive platforms for biomimetic tissue engineering. Torres-Rendon JG; Femmer T; De Laporte L; Tigges T; Rahimi K; Gremse F; Zafarnia S; Lederle W; Ifuku S; Wessling M; Hardy JG; Walther A Adv Mater; 2015 May; 27(19):2989-95. PubMed ID: 25833165 [TBL] [Abstract][Full Text] [Related]
69. Composite Inks for Extrusion Printing of Biological and Biomedical Constructs. Ravanbakhsh H; Bao G; Luo Z; Mongeau LG; Zhang YS ACS Biomater Sci Eng; 2021 Sep; 7(9):4009-4026. PubMed ID: 34510905 [TBL] [Abstract][Full Text] [Related]
70. Silk particles, microfibres and nanofibres: A comparative study of their functions in 3D printing hydrogel scaffolds. Zhang J; Allardyce BJ; Rajkhowa R; Kalita S; Dilley RJ; Wang X; Liu X Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109784. PubMed ID: 31349521 [TBL] [Abstract][Full Text] [Related]
71. Bioprinting synthetic self-assembling peptide hydrogels for biomedical applications. Loo Y; Hauser CA Biomed Mater; 2015 Dec; 11(1):014103. PubMed ID: 26694103 [TBL] [Abstract][Full Text] [Related]
72. Direct ink writing with high-strength and swelling-resistant biocompatible physically crosslinked hydrogels. Jiang P; Yan C; Guo Y; Zhang X; Cai M; Jia X; Wang X; Zhou F Biomater Sci; 2019 Apr; 7(5):1805-1814. PubMed ID: 30855616 [TBL] [Abstract][Full Text] [Related]
73. Metal Ion Mediated Cellulose Nanofibrils Transient Network in Covalently Cross-linked Hydrogels: Mechanistic Insight into Morphology and Dynamics. Yang J; Xu F; Han CR Biomacromolecules; 2017 Mar; 18(3):1019-1028. PubMed ID: 28192670 [TBL] [Abstract][Full Text] [Related]
77. DLP 3D Printing Meets Lignocellulosic Biopolymers: Carboxymethyl Cellulose Inks for 3D Biocompatible Hydrogels. Melilli G; Carmagnola I; Tonda-Turo C; Pirri F; Ciardelli G; Sangermano M; Hakkarainen M; Chiappone A Polymers (Basel); 2020 Jul; 12(8):. PubMed ID: 32722423 [TBL] [Abstract][Full Text] [Related]
78. Development of Bioinspired Functional Chitosan/Cellulose Nanofiber 3D Hydrogel Constructs by 3D Printing for Application in the Engineering of Mechanically Demanding Tissues. Kamdem Tamo A; Doench I; Walter L; Montembault A; Sudre G; David L; Morales-Helguera A; Selig M; Rolauffs B; Bernstein A; Hoenders D; Walther A; Osorio-Madrazo A Polymers (Basel); 2021 May; 13(10):. PubMed ID: 34065272 [TBL] [Abstract][Full Text] [Related]
79. Characterization and performance evaluation of colorimetric pH-sensitive indicator based on Ҡ-carrageenan/quince seed mucilage hydrogel as freshness/spoilage monitoring of rainbow trout fillet. Forghani S; Almasi H Food Chem; 2024 Nov; 457():140072. PubMed ID: 38905838 [TBL] [Abstract][Full Text] [Related]
80. From a plant secretion to the promising bone grafts: Cryogels of silicon-integrated quince seed mucilage by microwave-assisted sol-gel reaction. Yilmaz HD; Cengiz U; Arslan YE; Kiran F; Ceylan A J Biosci Bioeng; 2021 Apr; 131(4):420-433. PubMed ID: 33454223 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]