These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 34666160)

  • 1. Compressively sampled magnetic resonance imaging reconstruction based on split Bregman iteration with general non-uniform threshold shrinkage.
    Wang W; Cao D; Li X; Cao N
    Magn Reson Imaging; 2022 Jan; 85():297-307. PubMed ID: 34666160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Step adaptive fast iterative shrinkage thresholding algorithm for compressively sampled MR imaging reconstruction.
    Wang W; Cao N
    Magn Reson Imaging; 2018 Nov; 53():89-97. PubMed ID: 29886107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconstruction of compressively sampled MR images based on a local shrinkage thresholding algorithm with curvelet transform.
    Wang H; Zhou Y; Wu X; Wang W; Yao Q
    Med Biol Eng Comput; 2019 Oct; 57(10):2145-2158. PubMed ID: 31377962
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sparse reconstruction of magnetic resonance image combined with two-step iteration and adaptive shrinkage factor.
    Li X; Feng R; Xiao F; Yin Y; Cao D; Wu X; Zhu S; Wang W
    Math Biosci Eng; 2022 Sep; 19(12):13214-13226. PubMed ID: 36654043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compressively sampled MR image reconstruction using generalized thresholding iterative algorithm.
    Elahi S; Kaleem M; Omer H
    J Magn Reson; 2018 Jan; 286():91-98. PubMed ID: 29223565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MR image reconstruction based on framelets and nonlocal total variation using split Bregman method.
    Gopi VP; Palanisamy P; Wahid KA; Babyn P
    Int J Comput Assist Radiol Surg; 2014 May; 9(3):459-72. PubMed ID: 24014321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computed inverse resonance imaging for magnetic susceptibility map reconstruction.
    Chen Z; Calhoun V
    J Comput Assist Tomogr; 2012; 36(2):265-74. PubMed ID: 22446372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Truncated total variation in fractional B-spline wavelet transform for micro-CT image denoising.
    Ji D; Xue X; Xu C
    J Xray Sci Technol; 2023; 31(3):555-572. PubMed ID: 36911966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. L
    Hu Y; Liu J; Leng C; An Y; Zhang S; Wang K
    Mol Imaging Biol; 2016 Dec; 18(6):830-837. PubMed ID: 27277829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A photoacoustic imaging reconstruction method based on directional total variation with adaptive directivity.
    Wang J; Zhang C; Wang Y
    Biomed Eng Online; 2017 May; 16(1):64. PubMed ID: 28558769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regularized sensitivity encoding (SENSE) reconstruction using Bregman iterations.
    Liu B; King K; Steckner M; Xie J; Sheng J; Ying L
    Magn Reson Med; 2009 Jan; 61(1):145-52. PubMed ID: 19097223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of Split Bregman denoising for iterative reconstruction in fluorescence diffuse optical tomography.
    Chamorro-Servent J; Abascal JF; Aguirre J; Arridge S; Correia T; Ripoll J; Desco M; Vaquero JJ
    J Biomed Opt; 2013 Jul; 18(7):076016. PubMed ID: 23864014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MR image reconstruction based on iterative Split Bregman algorithm and nonlocal total variation.
    Gopi VP; Palanisamy P; Wahid KA; Babyn P
    Comput Math Methods Med; 2013; 2013():985819. PubMed ID: 23997810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Cone beam CT image iterative reconstruction based on Split-Bregman method].
    Yang L; Qi H; Xu Y; Zhen X; Lu W; Zhou L
    Nan Fang Yi Ke Da Xue Xue Bao; 2014 Jun; 34(6):783-6. PubMed ID: 24968830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Brain functional network reconstruction based on compressed sensing and fast iterative shrinkage-thresholding algorithm].
    Guo Q; Teng Y; Tong C; Li D; Wang X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2020 Oct; 37(5):855-862. PubMed ID: 33140610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Positron emission tomography image reconstruction using feature extraction.
    Gao J; Zhang Q; Liu Q; Zhang X; Zhang M; Yang Y; Liang D; Liu X; Zheng H; Hu Z
    J Xray Sci Technol; 2019; 27(5):949-963. PubMed ID: 31381539
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined iterative reconstruction and image-domain decomposition for dual energy CT using total-variation regularization.
    Dong X; Niu T; Zhu L
    Med Phys; 2014 May; 41(5):051909. PubMed ID: 24784388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adjustable shrinkage-thresholding projection algorithm for compressed sensing magnetic resonance imaging.
    Lang J; Gang K; Zhang C
    Magn Reson Imaging; 2022 Feb; 86():74-85. PubMed ID: 34856329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic residual Kaczmarz method for noise reducing reconstruction in magnetic particle imaging.
    Zhang P; Liu J; Li Y; Zhu T; Yin L; An Y; Zhong J; Hui H; Tian J
    Phys Med Biol; 2023 Jul; 68(14):. PubMed ID: 37339656
    [No Abstract]   [Full Text] [Related]  

  • 20. A CT Reconstruction Algorithm Based on L1/2 Regularization.
    Chen M; Mi D; He P; Deng L; Wei B
    Comput Math Methods Med; 2014; 2014():862910. PubMed ID: 24834109
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.