These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 34666229)
1. Automated detection and grading of Invasive Ductal Carcinoma breast cancer using ensemble of deep learning models. Barsha NA; Rahman A; Mahdy MRC Comput Biol Med; 2021 Dec; 139():104931. PubMed ID: 34666229 [TBL] [Abstract][Full Text] [Related]
2. CNN-based deep learning approach for classification of invasive ductal and metastasis types of breast carcinoma. Islam T; Hoque ME; Ullah M; Islam T; Nishu NA; Islam R Cancer Med; 2024 Aug; 13(16):e70069. PubMed ID: 39215495 [TBL] [Abstract][Full Text] [Related]
3. Performance analysis of seven Convolutional Neural Networks (CNNs) with transfer learning for Invasive Ductal Carcinoma (IDC) grading in breast histopathological images. Voon W; Hum YC; Tee YK; Yap WS; Salim MIM; Tan TS; Mokayed H; Lai KW Sci Rep; 2022 Nov; 12(1):19200. PubMed ID: 36357456 [TBL] [Abstract][Full Text] [Related]
4. Convolution Neural Network for Breast Cancer Detection and Classification Using Deep Learning. Abunasser BS; Al-Hiealy MRJ; Zaqout IS; Abu-Naser SS Asian Pac J Cancer Prev; 2023 Feb; 24(2):531-544. PubMed ID: 36853302 [TBL] [Abstract][Full Text] [Related]
5. Evaluating the effectiveness of stain normalization techniques in automated grading of invasive ductal carcinoma histopathological images. Voon W; Hum YC; Tee YK; Yap WS; Nisar H; Mokayed H; Gupta N; Lai KW Sci Rep; 2023 Nov; 13(1):20518. PubMed ID: 37993544 [TBL] [Abstract][Full Text] [Related]
6. A deep learning model for breast ductal carcinoma in situ classification in whole slide images. Kanavati F; Ichihara S; Tsuneki M Virchows Arch; 2022 May; 480(5):1009-1022. PubMed ID: 35076741 [TBL] [Abstract][Full Text] [Related]
7. Computer Aided Breast Cancer Detection Using Ensembling of Texture and Statistical Image Features. Roy SD; Das S; Kar D; Schwenker F; Sarkar R Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34071029 [TBL] [Abstract][Full Text] [Related]
8. An Invasive Ductal Carcinomas Breast Cancer Grade Classification Using an Ensemble of Convolutional Neural Networks. Kumaraswamy E; Kumar S; Sharma M Diagnostics (Basel); 2023 Jun; 13(11):. PubMed ID: 37296828 [TBL] [Abstract][Full Text] [Related]
9. Computer-aided diagnosis of breast ultrasound images using ensemble learning from convolutional neural networks. Moon WK; Lee YW; Ke HH; Lee SH; Huang CS; Chang RF Comput Methods Programs Biomed; 2020 Jul; 190():105361. PubMed ID: 32007839 [TBL] [Abstract][Full Text] [Related]
10. Breast Cancer Histopathology Image Classification Using an Ensemble of Deep Learning Models. Hameed Z; Zahia S; Garcia-Zapirain B; Javier Aguirre J; María Vanegas A Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32764398 [TBL] [Abstract][Full Text] [Related]
11. Deep Learning Computer-Aided Diagnosis for Breast Lesion in Digital Mammogram. Al-Antari MA; Al-Masni MA; Kim TS Adv Exp Med Biol; 2020; 1213():59-72. PubMed ID: 32030663 [TBL] [Abstract][Full Text] [Related]
12. DEBCM: Deep Learning-Based Enhanced Breast Invasive Ductal Carcinoma Classification Model in IoMT Healthcare Systems. Haq AU; Li JP; Khan I; Agbley BLY; Ahmad S; Uddin MI; Zhou W; Khan S; Alam I IEEE J Biomed Health Inform; 2024 Mar; 28(3):1207-1217. PubMed ID: 37015704 [TBL] [Abstract][Full Text] [Related]
13. Differentiating Grade in Breast Invasive Ductal Carcinoma Using Texture Analysis of MRI. Yuan G; Liu Y; Huang W; Hu B Comput Math Methods Med; 2020; 2020():6913418. PubMed ID: 32328154 [TBL] [Abstract][Full Text] [Related]
14. Mixed Invasive Ductal and Lobular Carcinoma of the Breast: Prognosis and the Importance of Histologic Grade. Metzger-Filho O; Ferreira AR; Jeselsohn R; Barry WT; Dillon DA; Brock JE; Vaz-Luis I; Hughes ME; Winer EP; Lin NU Oncologist; 2019 Jul; 24(7):e441-e449. PubMed ID: 30518616 [TBL] [Abstract][Full Text] [Related]
15. Artificial intelligence in automatic classification of invasive ductal carcinoma breast cancer in digital pathology images. Abdolahi M; Salehi M; Shokatian I; Reiazi R Med J Islam Repub Iran; 2020; 34():140. PubMed ID: 33437736 [No Abstract] [Full Text] [Related]
16. Machine learning techniques for mitoses classification. Nofallah S; Mehta S; Mercan E; Knezevich S; May CJ; Weaver D; Witten D; Elmore JG; Shapiro L Comput Med Imaging Graph; 2021 Jan; 87():101832. PubMed ID: 33302246 [TBL] [Abstract][Full Text] [Related]
17. The Use of Convolutional Neural Networks in the Prediction of Invasive Ductal Carcinoma in Histological Images of Breast Cancer. de Assis ÉG; do Patrocínio ZKG; Nobre CN Stud Health Technol Inform; 2022 Jun; 290():587-591. PubMed ID: 35673084 [TBL] [Abstract][Full Text] [Related]
18. Comparison of the association of mammographic density and clinical factors with ductal carcinoma in situ versus invasive ductal breast cancer in Korean women. Ko H; Shin J; Lee JE; Nam SJ; Nguyen TL; Hopper JL; Song YM BMC Cancer; 2017 Dec; 17(1):821. PubMed ID: 29207971 [TBL] [Abstract][Full Text] [Related]
19. An experimental study on breast lesion detection and classification from ultrasound images using deep learning architectures. Cao Z; Duan L; Yang G; Yue T; Chen Q BMC Med Imaging; 2019 Jul; 19(1):51. PubMed ID: 31262255 [TBL] [Abstract][Full Text] [Related]
20. Automated quantitative analysis of Ki-67 staining and HE images recognition and registration based on whole tissue sections in breast carcinoma. Feng M; Deng Y; Yang L; Jing Q; Zhang Z; Xu L; Wei X; Zhou Y; Wu D; Xiang F; Wang Y; Bao J; Bu H Diagn Pathol; 2020 May; 15(1):65. PubMed ID: 32471471 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]