These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 34666239)

  • 1. Incorporating Transcriptomic-Metabolomic analysis reveal the effect of ultrasound on ethanol production in Saccharomyces Cerevisiae.
    Yang Y; Ren W; Xu H; Cheng L; Dapaah MF; He R; Ma H
    Ultrason Sonochem; 2021 Nov; 79():105791. PubMed ID: 34666239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fermentation of Saccharomyces cerevisiae in a 7.5 L ultrasound-enhanced fermenter: Effect of sonication conditions on ethanol production, intracellular Ca
    He R; Ren W; Xiang J; Dabbour M; Kumah Mintah B; Li Y; Ma H
    Ultrason Sonochem; 2021 Aug; 76():105624. PubMed ID: 34126524
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fermentation of Saccharomyces cerevisiae in a one liter flask coupled with an external circulation ultrasonic irradiation slot: Influence of ultrasonic mode and frequency on the bacterial growth and metabolism yield.
    Zhang Z; Xiong F; Wang Y; Dai C; Xing Z; Dabbour M; Mintah B; He R; Ma H
    Ultrason Sonochem; 2019 Jun; 54():39-47. PubMed ID: 30827902
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of low-intensity ultrasound on the growth, cell membrane permeability and ethanol tolerance of Saccharomyces cerevisiae.
    Dai C; Xiong F; He R; Zhang W; Ma H
    Ultrason Sonochem; 2017 May; 36():191-197. PubMed ID: 28069200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrasound-assisted bioethanol production from waste newspaper.
    Subhedar PB; Gogate PR
    Ultrason Sonochem; 2015 Nov; 27():37-45. PubMed ID: 26186818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptomic-metabolomic analysis reveals the effect of copper toxicity on fermentation properties in Saccharomyces cerevisiae.
    Que Z; Wei M; Jiang W; Ma T; Zhang W; Zhao Z; Yan Y; Yang Y; Fang Y; Sun X
    J Hazard Mater; 2024 Aug; 475():134903. PubMed ID: 38878441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Steady-state and transient-state analysis of growth and metabolite production in a Saccharomyces cerevisiae strain with reduced pyruvate-decarboxylase activity.
    Flikweert MT; Kuyper M; van Maris AJ; Kötter P; van Dijken JP; Pronk JT
    Biotechnol Bioeng; 1999; 66(1):42-50. PubMed ID: 10556793
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization.
    Krahulec S; Petschacher B; Wallner M; Longus K; Klimacek M; Nidetzky B
    Microb Cell Fact; 2010 Mar; 9():16. PubMed ID: 20219100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae.
    Verho R; Londesborough J; Penttilä M; Richard P
    Appl Environ Microbiol; 2003 Oct; 69(10):5892-7. PubMed ID: 14532041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolomics approach to reduce the Crabtree effect in continuous culture of Saccharomyces cerevisiae.
    Imura M; Iwakiri R; Bamba T; Fukusaki E
    J Biosci Bioeng; 2018 Aug; 126(2):183-188. PubMed ID: 29685822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering of Saccharomyces cerevisiae for efficient anaerobic alcoholic fermentation of L-arabinose.
    Wisselink HW; Toirkens MJ; del Rosario Franco Berriel M; Winkler AA; van Dijken JP; Pronk JT; van Maris AJ
    Appl Environ Microbiol; 2007 Aug; 73(15):4881-91. PubMed ID: 17545317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Omics analysis reveals mechanism underlying metabolic oscillation during continuous very-high-gravity ethanol fermentation by Saccharomyces cerevisiae.
    Zhang X; Wang L; Li Q; den Haan R; Li F; Liu CG; Bai FW
    Biotechnol Bioeng; 2021 Aug; 118(8):2990-3001. PubMed ID: 33934328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptomic and proteomic effects of (-)-epigallocatechin 3-O-(3-O-methyl) gallate (EGCG3"Me) treatment on ethanol-stressed Saccharomyces cerevisiae cells.
    Chen Y; Cheng L; Zhang X; Cao J; Wu Z; Zheng X
    Food Res Int; 2019 May; 119():67-75. PubMed ID: 30884702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activation of futile cycles as an approach to increase ethanol yield during glucose fermentation in Saccharomyces cerevisiae.
    Semkiv MV; Dmytruk KV; Abbas CA; Sibirny AA
    Bioengineered; 2016 Apr; 7(2):106-11. PubMed ID: 26890808
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increasing anaerobic acetate consumption and ethanol yields in Saccharomyces cerevisiae with NADPH-specific alcohol dehydrogenase.
    Henningsen BM; Hon S; Covalla SF; Sonu C; Argyros DA; Barrett TF; Wiswall E; Froehlich AC; Zelle RM
    Appl Environ Microbiol; 2015 Dec; 81(23):8108-17. PubMed ID: 26386051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic responses of Saccharomyces cerevisiae to ethanol stress using gas chromatography-mass spectrometry.
    Ming M; Wang X; Lian L; Zhang H; Gao W; Zhu B; Lou D
    Mol Omics; 2019 Jun; 15(3):216-221. PubMed ID: 31066408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene expression profiles of the thermotolerant yeast Saccharomyces cerevisiae strain KKU-VN8 during high-temperature ethanol fermentation using sweet sorghum juice.
    Techaparin A; Thanonkeo P; Klanrit P
    Biotechnol Lett; 2017 Oct; 39(10):1521-1527. PubMed ID: 28721580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-omic characterization of laboratory-evolved Saccharomyces cerevisiae HJ7-14 with high ability of algae-based ethanol production.
    Kim SJ; Lee JE; Lee DY; Park H; Kim KH; Park YC
    Appl Microbiol Biotechnol; 2018 Oct; 102(20):8989-9002. PubMed ID: 30121750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An engineered non-oxidative glycolytic bypass based on Calvin-cycle enzymes enables anaerobic co-fermentation of glucose and sorbitol by Saccharomyces cerevisiae.
    van Aalst ACA; Mans R; Pronk JT
    Biotechnol Biofuels Bioprod; 2022 Oct; 15(1):112. PubMed ID: 36253796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Double mutation of the PDC1 and ADH1 genes improves lactate production in the yeast Saccharomyces cerevisiae expressing the bovine lactate dehydrogenase gene.
    Tokuhiro K; Ishida N; Nagamori E; Saitoh S; Onishi T; Kondo A; Takahashi H
    Appl Microbiol Biotechnol; 2009 Apr; 82(5):883-90. PubMed ID: 19122995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.