These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

351 related articles for article (PubMed ID: 34667183)

  • 21. Structure, function, and engineering of enzymes in isoflavonoid biosynthesis.
    Wang X
    Funct Integr Genomics; 2011 Mar; 11(1):13-22. PubMed ID: 21052759
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Engineering of Phytosterol-Producing Yeast Platforms for Functional Reconstitution of Downstream Biosynthetic Pathways.
    Xu S; Chen C; Li Y
    ACS Synth Biol; 2020 Nov; 9(11):3157-3170. PubMed ID: 33085451
    [TBL] [Abstract][Full Text] [Related]  

  • 23. De novo biosynthesis of sakuranetin from glucose by engineered Saccharomyces cerevisiae.
    Tu S; Xiao F; Mei C; Li S; Qiao P; Huang Z; He Y; Gong Z; Zhong W
    Appl Microbiol Biotechnol; 2023 Jun; 107(12):3899-3909. PubMed ID: 37148336
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Engineering a microbial platform for de novo biosynthesis of diverse methylxanthines.
    McKeague M; Wang YH; Cravens A; Win MN; Smolke CD
    Metab Eng; 2016 Nov; 38():191-203. PubMed ID: 27519552
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biosynthesis and engineering of kaempferol in Saccharomyces cerevisiae.
    Duan L; Ding W; Liu X; Cheng X; Cai J; Hua E; Jiang H
    Microb Cell Fact; 2017 Sep; 16(1):165. PubMed ID: 28950867
    [TBL] [Abstract][Full Text] [Related]  

  • 26. De novo biosynthesis of rubusoside and rebaudiosides in engineered yeasts.
    Xu Y; Wang X; Zhang C; Zhou X; Xu X; Han L; Lv X; Liu Y; Liu S; Li J; Du G; Chen J; Ledesma-Amaro R; Liu L
    Nat Commun; 2022 Jun; 13(1):3040. PubMed ID: 35650215
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Toward Developing a Yeast Cell Factory for the Production of Prenylated Flavonoids.
    Levisson M; Araya-Cloutier C; de Bruijn WJC; van der Heide M; Salvador López JM; Daran JM; Vincken JP; Beekwilder J
    J Agric Food Chem; 2019 Dec; 67(49):13478-13486. PubMed ID: 31016981
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Engineering cellular metabolite transport for biosynthesis of computationally predicted tropane alkaloid derivatives in yeast.
    Srinivasan P; Smolke CD
    Proc Natl Acad Sci U S A; 2021 Jun; 118(25):. PubMed ID: 34140414
    [TBL] [Abstract][Full Text] [Related]  

  • 29. De novo biosynthesis of anticarcinogenic icariin in engineered yeast.
    An T; Lin G; Liu Y; Qin L; Xu Y; Feng X; Li C
    Metab Eng; 2023 Nov; 80():207-215. PubMed ID: 37852432
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Improved production of Taxol
    Malcı K; Santibáñez R; Jonguitud-Borrego N; Santoyo-Garcia JH; Kerkhoven EJ; Rios-Solis L
    Microb Cell Fact; 2023 Nov; 22(1):243. PubMed ID: 38031061
    [TBL] [Abstract][Full Text] [Related]  

  • 31. De novo production of the flavonoid naringenin in engineered Saccharomyces cerevisiae.
    Koopman F; Beekwilder J; Crimi B; van Houwelingen A; Hall RD; Bosch D; van Maris AJ; Pronk JT; Daran JM
    Microb Cell Fact; 2012 Dec; 11():155. PubMed ID: 23216753
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Engineering a growth-phase-dependent biosynthetic pathway for carotenoid production in Saccharomyces cerevisiae.
    Su B; Song D; Yang F; Zhu H
    J Ind Microbiol Biotechnol; 2020 May; 47(4-5):383-393. PubMed ID: 32236768
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Raising the production of phloretin by alleviation of by-product of chalcone synthase in the engineered yeast.
    Jiang C; Liu X; Chen X; Cai Y; Zhuang Y; Liu T; Zhu X; Wang H; Liu Y; Jiang H; Wang W
    Sci China Life Sci; 2020 Nov; 63(11):1734-1743. PubMed ID: 32347474
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optimizing yeast for high-level production of kaempferol and quercetin.
    Tartik M; Liu J; Mohedano MT; Mao J; Chen Y
    Microb Cell Fact; 2023 Apr; 22(1):74. PubMed ID: 37076829
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Yeast Metabolic Engineering for Biosynthesis of Caffeic Acid-Derived Phenethyl Ester and Phenethyl Amide.
    Jia ZC; Liu D; Ma HD; Cui YH; Li HM; Li X; Yuan YJ
    ACS Synth Biol; 2023 Dec; 12(12):3635-3645. PubMed ID: 38016187
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Engineered Microbial Consortium for
    Tang D; Zheng X; Zhao Y; Zhang C; Chen C; Chen Y; Du L; Liu K; Li S
    J Agric Food Chem; 2024 Sep; 72(36):19977-19984. PubMed ID: 39213654
    [TBL] [Abstract][Full Text] [Related]  

  • 37. De novo production of the key branch point benzylisoquinoline alkaloid reticuline in yeast.
    Trenchard IJ; Siddiqui MS; Thodey K; Smolke CD
    Metab Eng; 2015 Sep; 31():74-83. PubMed ID: 26166409
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optimization of yeast-based production of medicinal protoberberine alkaloids.
    Galanie S; Smolke CD
    Microb Cell Fact; 2015 Sep; 14():144. PubMed ID: 26376732
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metabolic engineering of Saccharomyces cerevisiae for gram-scale diosgenin production.
    Xu L; Wang D; Chen J; Li B; Li Q; Liu P; Qin Y; Dai Z; Fan F; Zhang X
    Metab Eng; 2022 Mar; 70():115-128. PubMed ID: 35085779
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Yeast as a promising heterologous host for steroid bioproduction.
    Xu S; Li Y
    J Ind Microbiol Biotechnol; 2020 Oct; 47(9-10):829-843. PubMed ID: 32661815
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.