These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 34667244)

  • 1. Fibrinolytic nanocages dissolve clots in the tumor microenvironment, improving the distribution and therapeutic efficacy of anticancer drugs.
    Seo J; Do Yoo J; Kim M; Shim G; Oh YK; Park RW; Lee B; Kim IS; Kim S
    Exp Mol Med; 2021 Oct; 53(10):1592-1601. PubMed ID: 34667244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A targeted ferritin-microplasmin based thrombolytic nanocage selectively dissolves blood clots.
    Seo J; Al-Hilal TA; Jee JG; Kim YL; Kim HJ; Lee BH; Kim S; Kim IS
    Nanomedicine; 2018 Apr; 14(3):633-642. PubMed ID: 29309907
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fibrinolytic Enzyme Cotherapy Improves Tumor Perfusion and Therapeutic Efficacy of Anticancer Nanomedicine.
    Kirtane AR; Sadhukha T; Kim H; Khanna V; Koniar B; Panyam J
    Cancer Res; 2017 Mar; 77(6):1465-1475. PubMed ID: 28108516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Whole blood clots are more resistant to lysis than plasma clots--greater efficacy of rivaroxaban.
    Varin R; Mirshahi S; Mirshahi P; Klein C; Jamshedov J; Chidiac J; Perzborn E; Mirshahi M; Soria C; Soria J
    Thromb Res; 2013 Mar; 131(3):e100-9. PubMed ID: 23313382
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel and emerging therapies: thrombus-targeted fibrinolysis.
    Lippi G; Mattiuzzi C; Favaloro EJ
    Semin Thromb Hemost; 2013 Feb; 39(1):48-58. PubMed ID: 23034825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thrombolytic efficacy of recombinant human microplasmin in a canine model of copper coil-induced coronary artery thrombosis.
    Dommke C; Turschner O; Stassen JM; Van de Werf F; Lijnen HR; Verhamme P
    J Thromb Thrombolysis; 2010 Jul; 30(1):46-54. PubMed ID: 19834783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fibrinolytic Enzymes for Thrombolytic Therapy.
    Kumar SS; Sabu A
    Adv Exp Med Biol; 2019; 1148():345-381. PubMed ID: 31482506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prophylactic fibrinolysis through selective dissolution of nascent clots by tPA-carrying erythrocytes.
    Murciano JC; Medinilla S; Eslin D; Atochina E; Cines DB; Muzykantov VR
    Nat Biotechnol; 2003 Aug; 21(8):891-6. PubMed ID: 12845330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multifunctional nanoagent for thrombus-targeted fibrinolytic therapy.
    McCarthy JR; Sazonova IY; Erdem SS; Hara T; Thompson BD; Patel P; Botnaru I; Lin CP; Reed GL; Weissleder R; Jaffer FA
    Nanomedicine (Lond); 2012 Jul; 7(7):1017-28. PubMed ID: 22348271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thrombolytic Enzymes of Microbial Origin: A Review.
    Diwan D; Usmani Z; Sharma M; Nelson JW; Thakur VK; Christie G; Molina G; Gupta VK
    Int J Mol Sci; 2021 Sep; 22(19):. PubMed ID: 34638809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Blood clot contraction differentially modulates internal and external fibrinolysis.
    Tutwiler V; Peshkova AD; Le Minh G; Zaitsev S; Litvinov RI; Cines DB; Weisel JW
    J Thromb Haemost; 2019 Feb; 17(2):361-370. PubMed ID: 30582674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fibrin clot lysis by thrombolytic agents is impaired in newborns due to a low plasminogen concentration.
    Andrew M; Brooker L; Leaker M; Paes B; Weitz J
    Thromb Haemost; 1992 Sep; 68(3):325-30. PubMed ID: 1440499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transport processes in fibrinolysis and fibrinolytic therapy.
    Blinc A; Francis CW
    Thromb Haemost; 1996 Oct; 76(4):481-91. PubMed ID: 8902982
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Heparin effect on hydrolysis of fibrin clots in a bull and a man with varying fibrinolytic systems].
    Makogonenko EM
    Ukr Biokhim Zh (1978); 1997; 69(5-6):109-16. PubMed ID: 9606832
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel human microplasmin fold: new perspective to thrombosis treatment.
    Joison AN; Gallo FS
    Blood Coagul Fibrinolysis; 2011 Apr; 22(3):236-9. PubMed ID: 21245749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biochemical and biophysical conditions for blood clot lysis.
    Sabovic M; Blinc A
    Pflugers Arch; 2000; 440(5 Suppl):R134-6. PubMed ID: 11005642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combination targeting of 'platelets + fibrin' enhances clot anchorage efficiency of nanoparticles for vascular drug delivery.
    Sun M; Miyazawa K; Pendekanti T; Razmi A; Firlar E; Yang S; Shokuhfar T; Li O; Li W; Sen Gupta A
    Nanoscale; 2020 Nov; 12(41):21255-21270. PubMed ID: 33063812
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and Characterization of Plasmin-Independent Thrombolytic Enzymes.
    Hassan MM; Sharmin S; Kim HJ; Hong ST
    Circ Res; 2021 Feb; 128(3):386-400. PubMed ID: 33292062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fibrin-targeted perfluorocarbon nanoparticles for targeted thrombolysis.
    Marsh JN; Senpan A; Hu G; Scott MJ; Gaffney PJ; Wickline SA; Lanza GM
    Nanomedicine (Lond); 2007 Aug; 2(4):533-43. PubMed ID: 17716136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MASP-1 of the complement system alters fibrinolytic behaviour of blood clots.
    Jenny L; Noser D; Larsen JB; Dobó J; Gál P; Pál G; Schroeder V
    Mol Immunol; 2019 Oct; 114():1-9. PubMed ID: 31325724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.