These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 34667247)

  • 21. Theoretical Study on Symmetry-Broken Plasmonic Optical Tweezers for Heterogeneous Noble-Metal-Based Nano-Bowtie Antennas.
    Du G; Lu Y; Lankanath D; Hou X; Chen F
    Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33803040
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Scannable plasmonic trapping using a gold stripe.
    Wang K; Schonbrun E; Steinvurzel P; Crozier KB
    Nano Lett; 2010 Sep; 10(9):3506-11. PubMed ID: 20715811
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optical trapping of single nano-size particles using a plasmonic nanocavity.
    Zhang J; Lu F; Zhang W; Yu W; Zhu W; Premaratne M; Mei T; Xiao F; Zhao J
    J Phys Condens Matter; 2020 Aug; 32(47):. PubMed ID: 32870814
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Numerical Investigation of Tunable Plasmonic Tweezers based on Graphene Stripes.
    Samadi M; Darbari S; Moravvej-Farshi MK
    Sci Rep; 2017 Nov; 7(1):14533. PubMed ID: 29109398
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Trapping particles using waveguide-coupled gold bowtie plasmonic tweezers.
    Lin PT; Chu HY; Lu TW; Lee PT
    Lab Chip; 2014 Dec; 14(24):4647-52. PubMed ID: 25288366
    [TBL] [Abstract][Full Text] [Related]  

  • 26. All-optically controlled holographic plasmonic vortex array for multiple metallic particles manipulation.
    Ju Z; Ma H; Zhang S; Xie X; Min C; Zhang Y; Yuan X
    Opt Lett; 2023 Dec; 48(24):6577-6580. PubMed ID: 38099803
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optical tweezing and binding at high irradiation powers on black-Si.
    Shoji T; Mototsuji A; Balčytis A; Linklater D; Juodkazis S; Tsuboi Y
    Sci Rep; 2017 Sep; 7(1):12298. PubMed ID: 28951618
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Low-power nano-optical vortex trapping via plasmonic diabolo nanoantennas.
    Kang JH; Kim K; Ee HS; Lee YH; Yoon TY; Seo MK; Park HG
    Nat Commun; 2011 Dec; 2():582. PubMed ID: 22158437
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tunable plasmonic tweezers based on graphene nano-taper for nano-bio-particles manipulation: numerical study.
    Khorami AA; Barahimi B; Vatani S; Javanmard AS
    Opt Express; 2023 Jun; 31(13):21063-21077. PubMed ID: 37381215
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Three-dimensional optical trapping of a plasmonic nanoparticle using low numerical aperture optical tweezers.
    Brzobohatý O; Šiler M; Trojek J; Chvátal L; Karásek V; Paták A; Pokorná Z; Mika F; Zemánek P
    Sci Rep; 2015 Jan; 5():8106. PubMed ID: 25630432
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Plasmonic nano-tweezer based on square nanoplate tetramers.
    Jin Q; Wang L; Yan S; Wei H; Huang Y
    Appl Opt; 2018 Jul; 57(19):5328-5332. PubMed ID: 30117824
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Non-spherical gold nanoparticles trapped in optical tweezers: shape matters.
    Brzobohatý O; Šiler M; Trojek J; Chvátal L; Karásek V; Zemánek P
    Opt Express; 2015 Apr; 23(7):8179-89. PubMed ID: 25968657
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Plasmonic hybridization induced trapping and manipulation of a single Au nanowire on a metallic surface.
    Zhang Y; Wang J; Shen J; Man Z; Shi W; Min C; Yuan G; Zhu S; Urbach HP; Yuan X
    Nano Lett; 2014 Nov; 14(11):6430-6. PubMed ID: 25302534
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Plasmonic Optical Tweezers toward Molecular Manipulation: Tailoring Plasmonic Nanostructure, Light Source, and Resonant Trapping.
    Shoji T; Tsuboi Y
    J Phys Chem Lett; 2014 Sep; 5(17):2957-67. PubMed ID: 26278243
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Plasmonic Spanner for Metal Particle Manipulation.
    Zhang Y; Shi W; Shen Z; Man Z; Min C; Shen J; Zhu S; Urbach HP; Yuan X
    Sci Rep; 2015 Oct; 5():15446. PubMed ID: 26481689
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Plasmonic Manipulation of DNA using a Combination of Optical and Thermophoretic Forces: Separation of Different-Sized DNA from Mixture Solution.
    Shoji T; Itoh K; Saitoh J; Kitamura N; Yoshii T; Murakoshi K; Yamada Y; Yokoyama T; Ishihara H; Tsuboi Y
    Sci Rep; 2020 Feb; 10(1):3349. PubMed ID: 32098985
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Plasmonic tweezers for optical manipulation and biomedical applications.
    Tan H; Hu H; Huang L; Qian K
    Analyst; 2020 Aug; 145(17):5699-5712. PubMed ID: 32692343
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Plasmonic trapping with a gold nanopillar.
    Wang K; Crozier KB
    Chemphyschem; 2012 Aug; 13(11):2639-48. PubMed ID: 22623501
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Plasmonic optical trap having very large active volume realized with nano-ring structure.
    Kang Z; Zhang H; Lu H; Xu J; Ong HC; Shum P; Ho HP
    Opt Lett; 2012 May; 37(10):1748-50. PubMed ID: 22627558
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nonlinear modulation on optical trapping in a plasmonic bowtie structure.
    Zhang W; Zhang Y; Zhang S; Wang Y; Yang W; Min C; Yuan X
    Opt Express; 2021 Apr; 29(8):11664-11673. PubMed ID: 33984942
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.