These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 34667450)

  • 1. Non-ambient X-ray and neutron diffraction of novel relaxor ferroelectric
    Marshall J; Walker D; Thomas P
    J Appl Crystallogr; 2021 Oct; 54(Pt 5):1437-1454. PubMed ID: 34667450
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Bi(Zn
    Liu Z; Wu H; Paterson A; Ren W; Ye ZG
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Oct; 64(10):1608-1616. PubMed ID: 28682250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel optically active lead-free relaxor ferroelectric (Ba0.6Bi0.2Li0.2)TiO3.
    Borkar H; Rao V; Dutta S; Barvat A; Pal P; Tomar M; Gupta V; Scott JF; Kumar A
    J Phys Condens Matter; 2016 Jul; 28(26):265901. PubMed ID: 27165848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electric field and mechanical stress driven structural inhomogeneity and compositionally induced relaxor phase transformation in modified BaTiO
    Pal S; Swain AB; N V S; Murugavel P
    J Phys Condens Matter; 2020 Jun; 32(36):. PubMed ID: 32357355
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature and composition dependent phase transitions of lead-free piezoelectric (Bi
    Zhou Z; Luo J; Sun W; Li JF
    Phys Chem Chem Phys; 2017 Aug; 19(30):19992-19997. PubMed ID: 28722046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature dependence of the polarization and the dielectric constant near the paraelectric-ferroelectric transitions in BaTiO3.
    Yurtseven H; Kiraci A
    J Mol Model; 2013 Sep; 19(9):3925-30. PubMed ID: 23832630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crossover from Ferroelectric to Relaxor Behavior in Ba
    Palaimiene E; Macutkevic J; Banys J; Winiarski A; Gruszka I; Koperski J; Molak A
    Materials (Basel); 2020 Jun; 13(12):. PubMed ID: 32630508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals.
    Li F; Zhang S; Yang T; Xu Z; Zhang N; Liu G; Wang J; Wang J; Cheng Z; Ye ZG; Luo J; Shrout TR; Chen LQ
    Nat Commun; 2016 Dec; 7():13807. PubMed ID: 27991504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonstoichiometric charge defect induced relaxor antiferroelectric ordering in La modified Bi
    Pradhan LK; Pandey R; Kar M
    J Phys Condens Matter; 2020 Jan; 32(4):045404. PubMed ID: 31585456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Octahedral deformations and cationic displacements in the ferroelectric PbHf(0.8)Ti(0.2)O(3): a neutron powder diffraction study from 10 to 770 K.
    Muller C; Baudour JL; Bedoya C; Bouree F; Soubeyroux JL; Roubin M
    Acta Crystallogr B; 2000 Feb; 56 (Pt 1)():27-38. PubMed ID: 10735442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Composition- and temperature-driven phase transition characteristics and associated electromechanical properties in Bi0.5Na0.5TiO3-based lead-free ceramics.
    Bai W; Chen D; Zheng P; Shen B; Zhai J; Ji Z
    Dalton Trans; 2016 May; 45(20):8573-86. PubMed ID: 27125262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Giant dynamic electromechanical response via field driven pseudo-ergodicity in nonergodic relaxors.
    Qi H; Hu T; Deng S; Liu H; Fu Z; Chen J
    Nat Commun; 2023 Apr; 14(1):2414. PubMed ID: 37105995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural correlations in the enhancement of ferroelectric property of Sr doped BaTiO
    Yadav S; Chandra M; Rawat R; Sathe V; Sinha AK; Singh K
    J Phys Condens Matter; 2020 Aug; 32(44):. PubMed ID: 32634798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies on structural, dielectric and optical properties of (Ba
    Slimi H; Oueslati A; Aydi A
    RSC Adv; 2021 Apr; 11(24):14504-14512. PubMed ID: 35423971
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural effects behind the low temperature nonconventional relaxor behavior of the Sr2NaNb5O15 bronze.
    Torres-Pardo A; Jiménez R; González-Calbet JM; García-González E
    Inorg Chem; 2011 Dec; 50(23):12091-8. PubMed ID: 22035503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Achieving Giant Piezoelectricity and High Property Uniformity Simultaneously in a Relaxor Ferroelectric Crystal through Rare-Earth Element Doping.
    Liu Y; Li Q; Qiao L; Xu Z; Li F
    Adv Sci (Weinh); 2022 Dec; 9(35):e2204631. PubMed ID: 36285669
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Morphotropic Relaxor Boundary in a Relaxor System Showing Enhancement of Electrostrain and Dielectric Permittivity.
    Yang Y; Ji Y; Fang M; Zhou Z; Zhang L; Ren X
    Phys Rev Lett; 2019 Sep; 123(13):137601. PubMed ID: 31697531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monte Carlo simulations for describing the ferroelectric-relaxor crossover in BaTiO₃-based solid solutions.
    Padurariu L; Enachescu C; Mitoseriu L
    J Phys Condens Matter; 2011 Aug; 23(32):325901. PubMed ID: 21785183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of random electric fields in relaxors.
    Phelan D; Stock C; Rodriguez-Rivera JA; Chi S; Leão J; Long X; Xie Y; Bokov AA; Ye ZG; Ganesh P; Gehring PM
    Proc Natl Acad Sci U S A; 2014 Feb; 111(5):1754-9. PubMed ID: 24449912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structures des phases paraélectrique et ferroélectrique de Pb2KNb5O15.
    Sciau P; Calvarin G; Ravez J
    Acta Crystallogr B; 1999 Aug; 55(Pt 4):459-466. PubMed ID: 10927388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.