These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 34667545)

  • 1. Resolving the ultrafast dynamics of the anionic green fluorescent protein chromophore in water.
    Jones CM; List NH; Martínez TJ
    Chem Sci; 2021 Sep; 12(34):11347-11363. PubMed ID: 34667545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Steric and Electronic Origins of Fluorescence in GFP and GFP-like Proteins.
    Jones CM; List NH; Martínez TJ
    J Am Chem Soc; 2022 Jul; 144(28):12732-12746. PubMed ID: 35786916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Internal conversion of the anionic GFP chromophore: in and out of the I-twisted S
    List NH; Jones CM; Martínez TJ
    Chem Sci; 2022 Jan; 13(2):373-385. PubMed ID: 35126970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Delayed vibrational modulation of the solvated GFP chromophore into a conical intersection.
    Taylor MA; Zhu L; Rozanov ND; Stout KT; Chen C; Fang C
    Phys Chem Chem Phys; 2019 May; 21(19):9728-9739. PubMed ID: 31032505
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrafast
    Gao A; Wang M; Ding J
    J Chem Phys; 2018 Aug; 149(7):074304. PubMed ID: 30134672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intramolecular hydrogen bonding plays a crucial role in the photophysics and photochemistry of the GFP chromophore.
    Cui G; Lan Z; Thiel W
    J Am Chem Soc; 2012 Jan; 134(3):1662-72. PubMed ID: 22175658
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical control of excited-state reactivity of the anionic green fluorescent protein chromophore.
    List NH; Jones CM; Martínez TJ
    Commun Chem; 2024 Feb; 7(1):25. PubMed ID: 38316834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conical intersection dynamics in solution: the chromophore of Green Fluorescent Protein.
    Toniolo A; Olsen S; Manohar L; Martínez TJ
    Faraday Discuss; 2004; 127():149-63. PubMed ID: 15471344
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alkylated green fluorescent protein chromophores: dynamics in the gas phase and in aqueous solution.
    Ashworth EK; Kao MH; Anstöter CS; Riesco-Llach G; Blancafort L; Solntsev KM; Meech SR; Verlet JRR; Bull JN
    Phys Chem Chem Phys; 2023 Sep; 25(35):23626-23636. PubMed ID: 37649445
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Radiationless decay of red fluorescent protein chromophore models via twisted intramolecular charge-transfer states.
    Olsen S; Smith SC
    J Am Chem Soc; 2007 Feb; 129(7):2054-65. PubMed ID: 17253685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Origin, nature, and fate of the fluorescent state of the green fluorescent protein chromophore at the CASPT2//CASSCF resolution.
    Martin ME; Negri F; Olivucci M
    J Am Chem Soc; 2004 May; 126(17):5452-64. PubMed ID: 15113217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Excited state relaxation dynamics of model green fluorescent protein chromophore analogs: evidence for cis-trans isomerism.
    Rather SR; Rajbongshi BK; Nair NN; Sen P; Ramanathan G
    J Phys Chem A; 2011 Dec; 115(47):13733-42. PubMed ID: 21995735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new twist in the photophysics of the GFP chromophore: a volume-conserving molecular torsion couple.
    Conyard J; Heisler IA; Chan Y; Bulman Page PC; Meech SR; Blancafort L
    Chem Sci; 2018 Feb; 9(7):1803-1812. PubMed ID: 29675225
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isomerization mechanism of the HcRed fluorescent protein chromophore.
    Sun Q; Li Z; Lan Z; Pfisterer C; Doerr M; Fischer S; Smith SC; Thiel W
    Phys Chem Chem Phys; 2012 Aug; 14(32):11413-24. PubMed ID: 22801745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Local Electric Field Controls Fluorescence Quantum Yield of Red and Far-Red Fluorescent Proteins.
    Drobizhev M; Molina RS; Callis PR; Scott JN; Lambert GG; Salih A; Shaner NC; Hughes TE
    Front Mol Biosci; 2021; 8():633217. PubMed ID: 33763453
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Volume-conserving photoisomerization of a nonplanar GFP chromophore derivative: Nonadiabatic dynamics simulation.
    Gao A; Wang M
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 May; 214():86-94. PubMed ID: 30769155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Excited-State Proton-Transfer-Induced Trapping Enhances the Fluorescence Emission of a Locked GFP Chromophore.
    Liu XY; Chang XP; Xia SH; Cui G; Thiel W
    J Chem Theory Comput; 2016 Feb; 12(2):753-64. PubMed ID: 26744782
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential Energy Landscape of the Electronic States of the GFP Chromophore in Different Protonation Forms: Electronic Transition Energies and Conical Intersections.
    Polyakov IV; Grigorenko BL; Epifanovsky EM; Krylov AI; Nemukhin AV
    J Chem Theory Comput; 2010 Aug; 6(8):2377-87. PubMed ID: 26613493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum chemistry behind bioimaging: insights from ab initio studies of fluorescent proteins and their chromophores.
    Bravaya KB; Grigorenko BL; Nemukhin AV; Krylov AI
    Acc Chem Res; 2012 Feb; 45(2):265-75. PubMed ID: 21882809
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of the protein matrix in green fluorescent protein fluorescence.
    Maddalo SL; Zimmer M
    Photochem Photobiol; 2006; 82(2):367-72. PubMed ID: 16613487
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.