These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 34667559)

  • 1. "Click-switch" - one-step conversion of organic azides into photochromic diarylethenes for the generation of light-controlled systems.
    Becht S; Sen R; Büllmann SM; Dreuw A; Jäschke A
    Chem Sci; 2021 Sep; 12(34):11593-11603. PubMed ID: 34667559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and Development of Inverse-Type Nucleoside Diarylethene Photoswitches.
    Hendrich CM; Reinschmidt M; Büllmann SM; Kolmar T; Jäschke A
    Chemistry; 2024 Jul; ():e202401537. PubMed ID: 39045626
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis strategies for non-symmetric, photochromic diarylethenes.
    Sponza AD; Liu D; Chen EP; Shaw A; Diawara L; Chiu M
    Org Biomol Chem; 2020 Sep; 18(37):7238-7252. PubMed ID: 32926036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light-Controlled Reversible Modulation of Frontier Molecular Orbital Energy Levels in Trifluoromethylated Diarylethenes.
    Herder M; Eisenreich F; Bonasera A; Grafl A; Grubert L; Pätzel M; Schwarz J; Hecht S
    Chemistry; 2017 Mar; 23(15):3743-3754. PubMed ID: 28093831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Substituent effects on the properties of photochromic hybrid diarylethenes with a naphthalene moiety.
    Wang R; Dong X; Pu S; Liu G
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 137():1222-30. PubMed ID: 25305614
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Post-Modification of the Ethene Bridge in the Rational Design of Photochromic Diarylethenes.
    Lvov AG; Yokoyama Y; Shirinian VZ
    Chem Rec; 2020 Jan; 20(1):51-63. PubMed ID: 31063675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strategy for Molecular Design of Photochromic Diarylethenes Having Thermal Functionality.
    Kitagawa D; Kobatake S
    Chem Rec; 2016 Aug; 16(4):2005-15. PubMed ID: 27321920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent Advances on Diarylethene-Based Photoswitching Materials: Applications in Bioimaging, Controlled Singlet Oxygen Generation for Photodynamic Therapy and Catalysis.
    Bag SK; Pal A; Jana S; Thakur A
    Chem Asian J; 2024 Jun; 19(11):e202400238. PubMed ID: 38578057
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reversibly photoswitchable nucleosides: synthesis and photochromic properties of diarylethene-functionalized 7-deazaadenosine derivatives.
    Singer M; Jäschke A
    J Am Chem Soc; 2010 Jun; 132(24):8372-7. PubMed ID: 20481531
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and Spectral Properties of Photochromic Diarylethenes: Size Effect of the Ethene Bridge.
    Lvov AG; Kavun AM; Kachala VV; Nelyubina YV; Metelitsa AV; Shirinian VZ
    J Org Chem; 2017 Feb; 82(3):1477-1486. PubMed ID: 28093910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A DNA-Based Two-Component Excitonic Switch Utilizing High-Performance Diarylethenes.
    Büllmann SM; Kolmar T; Zorn NF; Zaumseil J; Jäschke A
    Angew Chem Int Ed Engl; 2022 Mar; 61(13):e202117735. PubMed ID: 35076154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of Red-Shifted and Fluorogenic Nucleoside and Oligonucleotide Diarylethene Photoswitches.
    Kolmar T; Becker A; Pfretzschner RA; Lelke A; Jäschke A
    Chemistry; 2021 Dec; 27(69):17386-17394. PubMed ID: 34519390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study on photochromism of diarylethenes with a 2,5-dihydropyrrole bridging unit: a convenient preparation of 3,4-diarylpyrroles from 3,4-diaryl-2,5-dihydropyrroles.
    Chen Y; Zeng DX; Xie N; Dang YZ
    J Org Chem; 2005 Jun; 70(13):5001-5. PubMed ID: 15960498
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reversible photochromic system based on rhodamine B salicylaldehyde hydrazone metal complex.
    Li K; Xiang Y; Wang X; Li J; Hu R; Tong A; Tang BZ
    J Am Chem Soc; 2014 Jan; 136(4):1643-9. PubMed ID: 24397593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential energy surfaces and quantum yields for photochromic diarylethene reactions.
    Nakamura S; Uchida K; Hatakeyama M
    Molecules; 2013 May; 18(5):5091-103. PubMed ID: 23644976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electron donor and acceptor functionalized dithienylethenes: effects of charge density on photochromic properties.
    Wan H; Xue H; Ling Y; Qiao Y; Chen Y; Zhou G
    Phys Chem Chem Phys; 2018 May; 20(21):14348-14356. PubMed ID: 29766171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of High-Performance Pyrimidine Nucleoside and Oligonucleotide Diarylethene Photoswitches.
    Kolmar T; Büllmann SM; Sarter C; Höfer K; Jäschke A
    Angew Chem Int Ed Engl; 2021 Apr; 60(15):8164-8173. PubMed ID: 33476096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and photochromic properties of oxime derivatives of 2,3-diarylcyclopent-2-en-1-ones.
    Shirinian VZ; Lonshakov DV; Lvov AG; Shimkin AA; Krayushkin MM
    Photochem Photobiol Sci; 2013 Sep; 12(9):1717-25. PubMed ID: 23804234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Triplet pathways in diarylethene photochromism: photophysical and computational study of dyads containing ruthenium(II) polypyridine and 1,2-bis(2-methylbenzothiophene-3-yl)maleimide units.
    Indelli MT; Carli S; Ghirotti M; Chiorboli C; Ravaglia M; Garavelli M; Scandola F
    J Am Chem Soc; 2008 Jun; 130(23):7286-99. PubMed ID: 18479107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational and Crystallographic Examination of Naphthoquinone Based Diarylethene Photochromes.
    Patel DG; Boggio-Pasqua M; Mitchell TB; Walton IM; Quigley WR; Novak FA
    Molecules; 2020 Jun; 25(11):. PubMed ID: 32516980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.