BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 34667581)

  • 1. Double diffusion for the programmable spatiotemporal patterning of multi-domain supramolecular gels.
    Cooke HS; Schlichter L; Piras CC; Smith DK
    Chem Sci; 2021 Sep; 12(36):12156-12164. PubMed ID: 34667581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabricating Shaped and Patterned Supramolecular Multigelator Objects via Diffusion-Adhesion Gel Assembly.
    Tangsombun C; Smith DK
    J Am Chem Soc; 2023 Nov; 145(44):24061-24070. PubMed ID: 37885219
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequential Assembly of Mutually Interactive Supramolecular Hydrogels and Fabrication of Multi-Domain Materials.
    Piras CC; Smith DK
    Chemistry; 2019 Aug; 25(48):11318-11326. PubMed ID: 31237367
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D-Printing Multi-Component Multi-Domain Supramolecular Gels with Differential Conductivity.
    Vadukoote TT; Avestro AJ; Smith DK
    Angew Chem Int Ed Engl; 2024 Jun; ():e202409757. PubMed ID: 38935516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photopatterned Multidomain Gels: Multi-Component Self-Assembled Hydrogels Based on Partially Self-Sorting 1,3:2,4-Dibenzylidene-D-sorbitol Derivatives.
    Cornwell DJ; Daubney OJ; Smith DK
    J Am Chem Soc; 2015 Dec; 137(49):15486-92. PubMed ID: 26646708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hybrid Self-Assembled Gel Beads for Tuneable pH-Controlled Rosuvastatin Delivery.
    Piras CC; Patterson AK; Smith DK
    Chemistry; 2021 Sep; 27(52):13203-13210. PubMed ID: 34346527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-assembled gel tubes, filaments and 3D-printing with
    Piras CC; Kay AG; Genever PG; Fitremann J; Smith DK
    Chem Sci; 2022 Feb; 13(7):1972-1981. PubMed ID: 35308847
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial and temporal diffusion-control of dynamic multi-domain self-assembled gels.
    Schlichter L; Piras CC; Smith DK
    Chem Sci; 2021 Feb; 12(11):4162-4172. PubMed ID: 34163689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shaping and Patterning Supramolecular Materials─Stem Cell-Compatible Dual-Network Hybrid Gels Loaded with Silver Nanoparticles.
    Piras CC; Mahon CS; Genever PG; Smith DK
    ACS Biomater Sci Eng; 2022 May; 8(5):1829-1840. PubMed ID: 35364810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatially-resolved soft materials for controlled release - hybrid hydrogels combining a robust photo-activated polymer gel with an interactive supramolecular gel.
    Chivers PRA; Smith DK
    Chem Sci; 2017 Oct; 8(10):7218-7227. PubMed ID: 29081954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multidomain hybrid hydrogels: spatially resolved photopatterned synthetic nanomaterials combining polymer and low-molecular-weight gelators.
    Cornwell DJ; Okesola BO; Smith DK
    Angew Chem Int Ed Engl; 2014 Nov; 53(46):12461-5. PubMed ID: 25146876
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-component hybrid hydrogels - understanding the extent of orthogonal assembly and its impact on controlled release.
    Vieira VMP; Hay LL; Smith DK
    Chem Sci; 2017 Oct; 8(10):6981-6990. PubMed ID: 29147525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tuning gelled lyotropic liquid crystals (LLCs) - probing the influence of different low molecular weight gelators on the phase diagram of the system H
    Steck K; van Esch JH; Smith DK; Stubenrauch C
    Soft Matter; 2019 Apr; 15(15):3111-3121. PubMed ID: 30758020
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulation of DBS, DBS-COOH, and DBS-CONHNH
    Knani D; Alperstein D
    J Phys Chem A; 2017 Feb; 121(5):1113-1120. PubMed ID: 28094942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insights into organogelation and its kinetics from Hansen solubility parameters. Toward a priori predictions of molecular gelation.
    Diehn KK; Oh H; Hashemipour R; Weiss RG; Raghavan SR
    Soft Matter; 2014 Apr; 10(15):2632-40. PubMed ID: 24647411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chiral bis(amino acid)- and bis(amino alcohol)-oxalamide gelators. Gelation properties, self-assembly motifs and chirality effects.
    Frkanec L; Zinić M
    Chem Commun (Camb); 2010 Jan; 46(4):522-37. PubMed ID: 20062853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparing and correlating solubility parameters governing the self-assembly of molecular gels using 1,3:2,4-dibenzylidene sorbitol as the gelator.
    Lan Y; Corradini MG; Liu X; May TE; Borondics F; Weiss RG; Rogers MA
    Langmuir; 2014 Dec; 30(47):14128-42. PubMed ID: 24849281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NMR characterization of the formation kinetics and structure of di-O-benzylidene sorbitol gels self-assembled in organic solvents.
    VanderHart DL; Douglas JF; Hudson SD; Antonucci JM; Wilder EA
    Langmuir; 2011 Mar; 27(5):1745-57. PubMed ID: 21247189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Commercially Relevant Orthogonal Multi-Component Supramolecular Hydrogels for Programmed Cell Growth.
    Vieira VMP; Lima AC; de Jong M; Smith DK
    Chemistry; 2018 Oct; 24(56):15112-15118. PubMed ID: 30021050
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.