BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 34668340)

  • 1. 2D Material Nanofiltration Membranes: From Fundamental Understandings to Rational Design.
    Liu X; Zhang L; Cui X; Zhang Q; Hu W; Du J; Zeng H; Xu Q
    Adv Sci (Weinh); 2021 Dec; 8(23):e2102493. PubMed ID: 34668340
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-dimensional materials for novel liquid separation membranes.
    Ying Y; Yang Y; Ying W; Peng X
    Nanotechnology; 2016 Aug; 27(33):332001. PubMed ID: 27388995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polycationic Polymer-Regulated Assembling of 2D MOF Nanosheets for High-Performance Nanofiltration.
    Ang H; Hong L
    ACS Appl Mater Interfaces; 2017 Aug; 9(33):28079-28088. PubMed ID: 28752999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Applying Transition-State Theory to Explore Transport and Selectivity in Salt-Rejecting Membranes: A Critical Review.
    Shefer I; Lopez K; Straub AP; Epsztein R
    Environ Sci Technol; 2022 Jun; 56(12):7467-7483. PubMed ID: 35549171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-Dimensional Nanofluidic Membranes toward Harvesting Salinity Gradient Power.
    Xin W; Jiang L; Wen L
    Acc Chem Res; 2021 Nov; 54(22):4154-4165. PubMed ID: 34719227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel water-stable two-dimensional zeolitic imidazolate frameworks thin-film composite membrane for enhancements in water permeability and nanofiltration performance.
    Li T; Ren Y; Wu D; Zhang W; Shi M; Ji C; Lv L; Hua M; Zhang W
    Chemosphere; 2020 Dec; 261():127717. PubMed ID: 32721692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual-layer Janus charged nanofiltration membranes constructed by sequential electrospray polymerization for efficient water softening.
    Ma Z; Ren LF; Ying D; Jia J; Shao J
    Chemosphere; 2023 Jan; 310():136929. PubMed ID: 36273607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transition Metal Dichalcogenide (TMD) Membranes with Ultrasmall Nanosheets for Ultrafast Molecule Separation.
    Su Y; Liu D; Yang G; Han Q; Qian Y; Liu Y; Wang L; Razal JM; Lei W
    ACS Appl Mater Interfaces; 2020 Oct; 12(40):45453-45459. PubMed ID: 32929951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent progress in the applications of layer-by-layer assembly to the preparation of nanostructured ion-rejecting water purification membranes.
    Sanyal O; Lee I
    J Nanosci Nanotechnol; 2014 Mar; 14(3):2178-89. PubMed ID: 24745210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polyamide membranes with nanoscale ordered structures for fast permeation and highly selective ion-ion separation.
    Zhao C; Zhang Y; Jia Y; Li B; Tang W; Shang C; Mo R; Li P; Liu S; Zhang S
    Nat Commun; 2023 Feb; 14(1):1112. PubMed ID: 36849434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving Ion Rejection of Conductive Nanofiltration Membrane through Electrically Enhanced Surface Charge Density.
    Zhang H; Quan X; Fan X; Yi G; Chen S; Yu H; Chen Y
    Environ Sci Technol; 2019 Jan; 53(2):868-877. PubMed ID: 30540165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reticulated Polyamide Thin-Film Nanocomposite Membranes Incorporated with 2D Boron Nitride Nanosheets for High-Performance Nanofiltration.
    Zheng X; Wang T; Li SH; Feng YN; Zhao ZZ; Ren YS; Zhao ZP
    ACS Appl Mater Interfaces; 2023 Jun; 15(23):28606-28617. PubMed ID: 37259858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanofiltration Membranes with Crumpled Polyamide Films: A Critical Review on Mechanisms, Performances, and Environmental Applications.
    Shao S; Zeng F; Long L; Zhu X; Peng LE; Wang F; Yang Z; Tang CY
    Environ Sci Technol; 2022 Sep; 56(18):12811-12827. PubMed ID: 36048162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Confined Ionic-Liquid-Mediated Cation Diffusion through Layered Membranes for High-Performance Osmotic Energy Conversion.
    Hu Y; Xiao H; Fu L; Liu P; Wu Y; Chen W; Qian Y; Zhou S; Kong XY; Zhang Z; Jiang L; Wen L
    Adv Mater; 2023 Jun; 35(24):e2301285. PubMed ID: 36930971
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing Nanofiltration Selectivity of Metal-Organic Framework Membranes via a Confined Interfacial Polymerization Strategy.
    Cheng P; Zhu T; Wang X; Fan K; Liu Y; Wang XM; Xia S
    Environ Sci Technol; 2023 Aug; 57(34):12879-12889. PubMed ID: 37582261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tannic acid modified MoS
    Hu W; Cui X; Xiang L; Gong L; Zhang L; Gao M; Wang W; Zhang J; Liu F; Yan B; Zeng H
    J Colloid Interface Sci; 2020 Feb; 560():177-185. PubMed ID: 31670015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of water matrix on the rejection of neutral pharmaceutically active compound by thin-film composite nanofiltration and reverse osmosis membranes.
    Shah IA; Ali S; Yang Z; Ihsanullah I; Huang H
    Chemosphere; 2022 Sep; 303(Pt 3):135211. PubMed ID: 35660049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nickel hydroxide nanosheet membranes with fast water and organics transport for molecular separation.
    Qu Y; Zhang QG; Soyekwo F; Gao RS; Lv RX; Lin CX; Chen MM; Zhu AM; Liu QL
    Nanoscale; 2016 Nov; 8(43):18428-18435. PubMed ID: 27775143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of micropollutants from water by commercially available nanofiltration membranes.
    Cuhorka J; Wallace E; Mikulášek P
    Sci Total Environ; 2020 Jun; 720():137474. PubMed ID: 32325567
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Boosting the Performance of Nanofiltration Membranes in Removing Organic Micropollutants: Trade-Off Effect, Strategy Evaluation, and Prospective Development.
    Liu Y; Wang K; Zhou Z; Wei X; Xia S; Wang XM; Xie YF; Huang X
    Environ Sci Technol; 2022 Nov; 56(22):15220-15237. PubMed ID: 36330774
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.