These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 34668501)
21. PbS/Cd₃P₂ quantum heterojunction colloidal quantum dot solar cells. Cao H; Liu Z; Zhu X; Peng J; Hu L; Xu S; Luo M; Ma W; Tang J; Liu H Nanotechnology; 2015 Jan; 26(3):035401. PubMed ID: 25548866 [TBL] [Abstract][Full Text] [Related]
22. High-efficiency colloidal quantum dot infrared light-emitting diodes via engineering at the supra-nanocrystalline level. Pradhan S; Di Stasio F; Bi Y; Gupta S; Christodoulou S; Stavrinadis A; Konstantatos G Nat Nanotechnol; 2019 Jan; 14(1):72-79. PubMed ID: 30510279 [TBL] [Abstract][Full Text] [Related]
32. Cascade surface modification of colloidal quantum dot inks enables efficient bulk homojunction photovoltaics. Choi MJ; García de Arquer FP; Proppe AH; Seifitokaldani A; Choi J; Kim J; Baek SW; Liu M; Sun B; Biondi M; Scheffel B; Walters G; Nam DH; Jo JW; Ouellette O; Voznyy O; Hoogland S; Kelley SO; Jung YS; Sargent EH Nat Commun; 2020 Jan; 11(1):103. PubMed ID: 31900394 [TBL] [Abstract][Full Text] [Related]
33. Picosecond Charge Transfer and Long Carrier Diffusion Lengths in Colloidal Quantum Dot Solids. Proppe AH; Xu J; Sabatini RP; Fan JZ; Sun B; Hoogland S; Kelley SO; Voznyy O; Sargent EH Nano Lett; 2018 Nov; 18(11):7052-7059. PubMed ID: 30359524 [TBL] [Abstract][Full Text] [Related]
34. The complete in-gap electronic structure of colloidal quantum dot solids and its correlation with electronic transport and photovoltaic performance. Katsiev K; Ip AH; Fischer A; Tanabe I; Zhang X; Kirmani AR; Voznyy O; Rollny LR; Chou KW; Thon SM; Carey GH; Cui X; Amassian A; Dowben P; Sargent EH; Bakr OM Adv Mater; 2014 Feb; 26(6):937-42. PubMed ID: 24243769 [TBL] [Abstract][Full Text] [Related]
35. Preventing interfacial recombination in colloidal quantum dot solar cells by doping the metal oxide. Ehrler B; Musselman KP; Böhm ML; Morgenstern FS; Vaynzof Y; Walker BJ; Macmanus-Driscoll JL; Greenham NC ACS Nano; 2013 May; 7(5):4210-20. PubMed ID: 23531107 [TBL] [Abstract][Full Text] [Related]
36. 10.6% Certified Colloidal Quantum Dot Solar Cells via Solvent-Polarity-Engineered Halide Passivation. Lan X; Voznyy O; García de Arquer FP; Liu M; Xu J; Proppe AH; Walters G; Fan F; Tan H; Liu M; Yang Z; Hoogland S; Sargent EH Nano Lett; 2016 Jul; 16(7):4630-4. PubMed ID: 27351104 [TBL] [Abstract][Full Text] [Related]
37. Surface and Interface Chemistry in Colloidal Quantum Dots for Solar Applications Studied by X-Ray Photoelectron Spectroscopy. Clark PCJ; Flavell WR Chem Rec; 2019 Jul; 19(7):1233-1243. PubMed ID: 30387544 [TBL] [Abstract][Full Text] [Related]
38. Enhancing the Efficiency and Stability of PbS Quantum Dot Solar Cells through Engineering an Ultrathin NiO Nanocrystalline Interlayer. Liu S; Hu L; Huang S; Zhang W; Ma J; Wang J; Guan X; Lin CH; Kim J; Wan T; Lei Q; Chu D; Wu T ACS Appl Mater Interfaces; 2020 Oct; 12(41):46239-46246. PubMed ID: 32929953 [TBL] [Abstract][Full Text] [Related]
39. High-Efficiency Colloidal Quantum Dot Photovoltaics via Robust Self-Assembled Monolayers. Kim GH; García de Arquer FP; Yoon YJ; Lan X; Liu M; Voznyy O; Jagadamma LK; Abbas AS; Yang Z; Fan F; Ip AH; Kanjanaboos P; Hoogland S; Kim JY; Sargent EH Nano Lett; 2015 Nov; 15(11):7691-6. PubMed ID: 26509283 [TBL] [Abstract][Full Text] [Related]