These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 34669110)

  • 1. Prediction of Micronucleus Assay Outcome Using In Vivo Activity Data and Molecular Structure Features.
    Ramesh P; Veerappapillai S
    Appl Biochem Biotechnol; 2021 Dec; 193(12):4018-4034. PubMed ID: 34669110
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Fan D; Yang H; Li F; Sun L; Di P; Li W; Tang Y; Liu G
    Toxicol Res (Camb); 2018 Mar; 7(2):211-220. PubMed ID: 30090576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New in silico models to predict in vitro micronucleus induction as marker of genotoxicity.
    Baderna D; Gadaleta D; Lostaglio E; Selvestrel G; Raitano G; Golbamaki A; Lombardo A; Benfenati E
    J Hazard Mater; 2020 Mar; 385():121638. PubMed ID: 31757721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting the reproductive toxicity of chemicals using ensemble learning methods and molecular fingerprints.
    Feng H; Zhang L; Li S; Liu L; Yang T; Yang P; Zhao J; Arkin IT; Liu H
    Toxicol Lett; 2021 Apr; 340():4-14. PubMed ID: 33421549
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In silico prediction of chemical reproductive toxicity using machine learning.
    Jiang C; Yang H; Di P; Li W; Tang Y; Liu G
    J Appl Toxicol; 2019 Jun; 39(6):844-854. PubMed ID: 30687929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction and mechanistic analysis of drug-induced liver injury (DILI) based on chemical structure.
    Liu A; Walter M; Wright P; Bartosik A; Dolciami D; Elbasir A; Yang H; Bender A
    Biol Direct; 2021 Jan; 16(1):6. PubMed ID: 33461600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New QSAR models to predict chromosome damaging potential based on the in vivo micronucleus test.
    Van Bossuyt M; Raitano G; Honma M; Van Hoeck E; Vanhaecke T; Rogiers V; Mertens B; Benfenati E
    Toxicol Lett; 2020 Sep; 329():80-84. PubMed ID: 32360788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ChemBioSim: Enhancing Conformal Prediction of In Vivo Toxicity by Use of Predicted Bioactivities.
    Garcia de Lomana M; Morger A; Norinder U; Buesen R; Landsiedel R; Volkamer A; Kirchmair J; Mathea M
    J Chem Inf Model; 2021 Jul; 61(7):3255-3272. PubMed ID: 34153183
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combining machine learning models of in vitro and in vivo bioassays improves rat carcinogenicity prediction.
    Guan D; Fan K; Spence I; Matthews S
    Regul Toxicol Pharmacol; 2018 Apr; 94():8-15. PubMed ID: 29337192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The new ISSMIC database on in vivo micronucleus and its role in assessing genotoxicity testing strategies.
    Benigni R; Bossa C; Tcheremenskaia O; Battistelli CL; Crettaz P
    Mutagenesis; 2012 Jan; 27(1):87-92. PubMed ID: 21965461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct Comparison of Total Clearance Prediction: Computational Machine Learning Model versus Bottom-Up Approach Using In Vitro Assay.
    Kosugi Y; Hosea N
    Mol Pharm; 2020 Jul; 17(7):2299-2309. PubMed ID: 32478525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of selective estrogen receptor beta agonist using open data and machine learning approach.
    Niu AQ; Xie LJ; Wang H; Zhu B; Wang SQ
    Drug Des Devel Ther; 2016; 10():2323-31. PubMed ID: 27486309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A decision tree-based integrated testing strategy for tailor-made carcinogenicity evaluation of test substances using genotoxicity test results and chemical spaces.
    Fujita Y; Honda H; Yamane M; Morita T; Matsuda T; Morita O
    Mutagenesis; 2019 Mar; 34(1):101-109. PubMed ID: 30551173
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comprehensive support vector machine binary hERG classification model based on extensive but biased end point hERG data sets.
    Shen MY; Su BH; Esposito EX; Hopfinger AJ; Tseng YJ
    Chem Res Toxicol; 2011 Jun; 24(6):934-49. PubMed ID: 21504223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting the cytotoxicity of chemicals using ensemble learning methods and molecular fingerprints.
    Yin Z; Ai H; Zhang L; Ren G; Wang Y; Zhao Q; Liu H
    J Appl Toxicol; 2019 Oct; 39(10):1366-1377. PubMed ID: 30763981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting Organ Toxicity Using in Vitro Bioactivity Data and Chemical Structure.
    Liu J; Patlewicz G; Williams AJ; Thomas RS; Shah I
    Chem Res Toxicol; 2017 Nov; 30(11):2046-2059. PubMed ID: 28768096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In silico Prediction of Drug Induced Liver Toxicity Using Substructure Pattern Recognition Method.
    Zhang C; Cheng F; Li W; Liu G; Lee PW; Tang Y
    Mol Inform; 2016 Apr; 35(3-4):136-44. PubMed ID: 27491923
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In silico prediction of potential drug-induced nephrotoxicity with machine learning methods.
    Gong Y; Teng D; Wang Y; Gu Y; Wu Z; Li W; Tang Y; Liu G
    J Appl Toxicol; 2022 Oct; 42(10):1639-1650. PubMed ID: 35429013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of hERG potassium channel blockage using ensemble learning methods and molecular fingerprints.
    Liu M; Zhang L; Li S; Yang T; Liu L; Zhao J; Liu H
    Toxicol Lett; 2020 Oct; 332():88-96. PubMed ID: 32629073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Classification of HIV-1 Protease Inhibitors by Machine Learning Methods.
    Li Y; Tian Y; Qin Z; Yan A
    ACS Omega; 2018 Nov; 3(11):15837-15849. PubMed ID: 30556015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.