These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 34669110)

  • 21. Prediction of Blood-Brain Barrier Penetration (BBBP) Based on Molecular Descriptors of the Free-Form and In-Blood-Form Datasets.
    Sakiyama H; Fukuda M; Okuno T
    Molecules; 2021 Dec; 26(24):. PubMed ID: 34946509
    [TBL] [Abstract][Full Text] [Related]  

  • 22.
    Kang Y; Jeong B; Lim DH; Lee D; Lim KM
    J Toxicol Environ Health A; 2021 Dec; 84(23):960-972. PubMed ID: 34328061
    [TBL] [Abstract][Full Text] [Related]  

  • 23. ADMET evaluation in drug discovery: 15. Accurate prediction of rat oral acute toxicity using relevance vector machine and consensus modeling.
    Lei T; Li Y; Song Y; Li D; Sun H; Hou T
    J Cheminform; 2016; 8():6. PubMed ID: 26839598
    [TBL] [Abstract][Full Text] [Related]  

  • 24. CAPi: Computational Model for Apicoplast Inhibitors Prediction Against Plasmodium Parasite.
    Dixit S; Singla D
    Curr Comput Aided Drug Des; 2017 Nov; 13(4):303-310. PubMed ID: 28260517
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In Silico Prediction of Chemical-Induced Hepatocellular Hypertrophy Using Molecular Descriptors.
    Ambe K; Ishihara K; Ochibe T; Ohya K; Tamura S; Inoue K; Yoshida M; Tohkin M
    Toxicol Sci; 2018 Apr; 162(2):667-675. PubMed ID: 29309657
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Environmental toxicity risk evaluation of nitroaromatic compounds: Machine learning driven binary/multiple classification and design of safe alternatives.
    Hao Y; Fan T; Sun G; Li F; Zhang N; Zhao L; Zhong R
    Food Chem Toxicol; 2022 Dec; 170():113461. PubMed ID: 36243219
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bioactivity Comparison across Multiple Machine Learning Algorithms Using over 5000 Datasets for Drug Discovery.
    Lane TR; Foil DH; Minerali E; Urbina F; Zorn KM; Ekins S
    Mol Pharm; 2021 Jan; 18(1):403-415. PubMed ID: 33325717
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In silico prediction of chemical-induced hematotoxicity with machine learning and deep learning methods.
    Hua Y; Shi Y; Cui X; Li X
    Mol Divers; 2021 Aug; 25(3):1585-1596. PubMed ID: 34196933
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparing Multiple Machine Learning Algorithms and Metrics for Estrogen Receptor Binding Prediction.
    Russo DP; Zorn KM; Clark AM; Zhu H; Ekins S
    Mol Pharm; 2018 Oct; 15(10):4361-4370. PubMed ID: 30114914
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of improved QSAR models for predicting the outcome of the in vivo micronucleus genetic toxicity assay.
    Yoo JW; Kruhlak NL; Landry C; Cross KP; Sedykh A; Stavitskaya L
    Regul Toxicol Pharmacol; 2020 Jun; 113():104620. PubMed ID: 32092371
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development and evaluation of in silico prediction model for drug-induced respiratory toxicity by using naïve Bayes classifier method.
    Zhang H; Ma JX; Liu CT; Ren JX; Ding L
    Food Chem Toxicol; 2018 Nov; 121():593-603. PubMed ID: 30261216
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Improved Prediction of Blood-Brain Barrier Permeability Through Machine Learning with Combined Use of Molecular Property-Based Descriptors and Fingerprints.
    Yuan Y; Zheng F; Zhan CG
    AAPS J; 2018 Mar; 20(3):54. PubMed ID: 29564576
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ensemble Models Based on QuBiLS-MAS Features and Shallow Learning for the Prediction of Drug-Induced Liver Toxicity: Improving Deep Learning and Traditional Approaches.
    Mora JR; Marrero-Ponce Y; García-Jacas CR; Suarez Causado A
    Chem Res Toxicol; 2020 Jul; 33(7):1855-1873. PubMed ID: 32406679
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Study on the hERG Blocker Prediction Using Chemical Fingerprint Analysis.
    Choi KE; Balupuri A; Kang NS
    Molecules; 2020 Jun; 25(11):. PubMed ID: 32512802
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In silico prediction of chemical Ames mutagenicity.
    Xu C; Cheng F; Chen L; Du Z; Li W; Liu G; Lee PW; Tang Y
    J Chem Inf Model; 2012 Nov; 52(11):2840-7. PubMed ID: 23030379
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In silico prediction of drug-induced rhabdomyolysis with machine-learning models and structural alerts.
    Cui X; Liu J; Zhang J; Wu Q; Li X
    J Appl Toxicol; 2019 Aug; 39(8):1224-1232. PubMed ID: 31006880
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Computational models for the classification of mPGES-1 inhibitors with fingerprint descriptors.
    Xia Z; Yan A
    Mol Divers; 2017 Aug; 21(3):661-675. PubMed ID: 28484935
    [TBL] [Abstract][Full Text] [Related]  

  • 38. New clues on carcinogenicity-related substructures derived from mining two large datasets of chemical compounds.
    Golbamaki A; Benfenati E; Golbamaki N; Manganaro A; Merdivan E; Roncaglioni A; Gini G
    J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2016 Apr; 34(2):97-113. PubMed ID: 26986491
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Using Machine Learning Methods and Structural Alerts for Prediction of Mitochondrial Toxicity.
    Hemmerich J; Troger F; Füzi B; F Ecker G
    Mol Inform; 2020 May; 39(5):e2000005. PubMed ID: 32108997
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In silico estimation of chemical aquatic toxicity on crustaceans using chemical category methods.
    Cao Q; Liu L; Yang H; Cai Y; Li W; Liu G; Lee PW; Tang Y
    Environ Sci Process Impacts; 2018 Sep; 20(9):1234-1243. PubMed ID: 30069560
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.