These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 34669404)

  • 1. Building Efficient Ion Pathway in Highly Densified Thick Electrodes with High Gravimetric and Volumetric Energy Densities.
    Wu J; Ju Z; Zhang X; Takeuchi KJ; Marschilok AC; Takeuchi ES; Yu G
    Nano Lett; 2021 Nov; 21(21):9339-9346. PubMed ID: 34669404
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrahigh-Capacity and Scalable Architected Battery Electrodes
    Wu J; Ju Z; Zhang X; Quilty C; Takeuchi KJ; Bock DC; Marschilok AC; Takeuchi ES; Yu G
    ACS Nano; 2021 Dec; 15(12):19109-19118. PubMed ID: 34410706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Packing Activated Carbons into Dense Graphene Network by Capillarity for High Volumetric Performance Supercapacitors.
    Li P; Li H; Han D; Shang T; Deng Y; Tao Y; Lv W; Yang QH
    Adv Sci (Weinh); 2019 Jul; 6(14):1802355. PubMed ID: 31380202
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrafast-Charging Silicon-Based Coral-Like Network Anodes for Lithium-Ion Batteries with High Energy and Power Densities.
    Wang B; Ryu J; Choi S; Zhang X; Pribat D; Li X; Zhi L; Park S; Ruoff RS
    ACS Nano; 2019 Feb; 13(2):2307-2315. PubMed ID: 30707012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beyond Activated Carbon: Graphite-Cathode-Derived Li-Ion Pseudocapacitors with High Energy and High Power Densities.
    Wang G; Oswald S; Löffler M; Müllen K; Feng X
    Adv Mater; 2019 Apr; 31(14):e1807712. PubMed ID: 30767311
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering and Optimization of Silicon-Iron-Manganese Nanoalloy Electrode for Enhanced Lithium-Ion Battery.
    Alaboina PK; Cho JS; Cho SJ
    Nanomicro Lett; 2017; 9(4):41. PubMed ID: 30393736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing Electrode Performance through Triple Distribution Modulation of Active Material, Conductive Agent, and Porosity.
    He R; Cai C; Li S; Cheng S; Xie J
    Small; 2024 Jul; 20(29):e2311044. PubMed ID: 38368268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From Fundamental Understanding to Engineering Design of High-Performance Thick Electrodes for Scalable Energy-Storage Systems.
    Wu J; Zhang X; Ju Z; Wang L; Hui Z; Mayilvahanan K; Takeuchi KJ; Marschilok AC; West AC; Takeuchi ES; Yu G
    Adv Mater; 2021 Jul; 33(26):e2101275. PubMed ID: 34028911
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flexible Free-Standing MoO
    Zheng W; Halim J; El Ghazaly A; Etman AS; Tseng EN; Persson POÅ; Rosen J; Barsoum MW
    Adv Sci (Weinh); 2021 Feb; 8(3):2003656. PubMed ID: 33552874
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanocatalyst-Assisted Fine Tailoring of Pore Structure in Holey-Graphene for Enhanced Performance in Energy Storage.
    Dutta D; Jiang JY; Jamaluddin A; He SM; Hung YH; Chen F; Chang JK; Su CY
    ACS Appl Mater Interfaces; 2019 Oct; 11(40):36560-36570. PubMed ID: 31508931
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strategy of Enhancing the Volumetric Energy Density for Lithium-Sulfur Batteries.
    Liu YT; Liu S; Li GR; Gao XP
    Adv Mater; 2021 Feb; 33(8):e2003955. PubMed ID: 33368710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-Tortuosity Thick Electrodes with Active Materials Gradient Design for Enhanced Energy Storage.
    Wu J; Ju Z; Zhang X; Xu X; Takeuchi KJ; Marschilok AC; Takeuchi ES; Yu G
    ACS Nano; 2022 Mar; 16(3):4805-4812. PubMed ID: 35234442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Densified vertically lamellar electrode architectures for compact energy storage.
    Ju Z; Checko S; Xu X; Calderon J; Raigama KU; Takeuchi KJ; Marschilok AC; Takeuchi ES; Yu G
    Proc Natl Acad Sci U S A; 2023 Jul; 120(30):e2308009120. PubMed ID: 37459515
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High Volumetric Energy Density Asymmetric Supercapacitors Based on Well-Balanced Graphene and Graphene-MnO
    Sheng L; Jiang L; Wei T; Fan Z
    Small; 2016 Oct; 12(37):5217-5227. PubMed ID: 27483052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electronic Conductive Inorganic Cathodes Promising High-Energy Organic Batteries.
    Mao M; Wang S; Lin Z; Liu T; Hu YS; Li H; Huang X; Chen L; Suo L
    Adv Mater; 2021 Feb; 33(8):e2005781. PubMed ID: 33470470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Double-Holey-Heterostructure Frameworks Enable Fast, Stable, and Simultaneous Ultrahigh Gravimetric, Areal, and Volumetric Lithium Storage.
    Chen Z; Chen J; Bu F; Agboola PO; Shakir I; Xu Y
    ACS Nano; 2018 Dec; 12(12):12879-12887. PubMed ID: 30525431
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immobile polyanionic backbone enables a 900-μm-thick electrode for compact energy storage with unprecedented areal capacitance.
    Li H; Wu Z; Liu X; Lu H; Zhang W; Li F; Yu H; Yu J; Zhang B; Xiong Z; Tao Y; Yang QH
    Natl Sci Rev; 2024 Aug; 11(8):nwae207. PubMed ID: 39007002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Energy-Density Zinc-Air Microbatteries with Lean PVA-KOH-K
    Zhang J; Huang Y; Yang Q; Venkatesh V; Synodis M; Pikul JH; Bidstrup Allen SA; Allen MG
    ACS Appl Mater Interfaces; 2023 Feb; 15(5):6807-6816. PubMed ID: 36700920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrode Design for MnO
    Douard C; Athouël L; Brown D; Crosnier O; Rebmann G; Schilling O; Brousse T
    Materials (Basel); 2021 Jun; 14(11):. PubMed ID: 34205882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extraordinary Thickness-Independent Electrochemical Energy Storage Enabled by Cross-Linked Microporous Carbon Nanosheets.
    Yuan G; Liang Y; Hu H; Li H; Xiao Y; Dong H; Liu Y; Zheng M
    ACS Appl Mater Interfaces; 2019 Jul; 11(30):26946-26955. PubMed ID: 31271278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.