These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 34669406)

  • 21. Structure-based sampling and self-correcting machine learning for accurate calculations of potential energy surfaces and vibrational levels.
    Dral PO; Owens A; Yurchenko SN; Thiel W
    J Chem Phys; 2017 Jun; 146(24):244108. PubMed ID: 28668062
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Machine learning Frenkel Hamiltonian parameters to accelerate simulations of exciton dynamics.
    Farahvash A; Lee CK; Sun Q; Shi L; Willard AP
    J Chem Phys; 2020 Aug; 153(7):074111. PubMed ID: 32828098
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ab initio calculation of real solids via neural network ansatz.
    Li X; Li Z; Chen J
    Nat Commun; 2022 Dec; 13(1):7895. PubMed ID: 36550157
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Linear-scaling explicitly correlated treatment of solids: periodic local MP2-F12 method.
    Usvyat D
    J Chem Phys; 2013 Nov; 139(19):194101. PubMed ID: 24320310
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Machine learning exciton dynamics.
    Häse F; Valleau S; Pyzer-Knapp E; Aspuru-Guzik A
    Chem Sci; 2016 Aug; 7(8):5139-5147. PubMed ID: 30155164
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Divergence of Many-Body Perturbation Theory for Noncovalent Interactions of Large Molecules.
    Nguyen BD; Chen GP; Agee MM; Burow AM; Tang MP; Furche F
    J Chem Theory Comput; 2020 Apr; 16(4):2258-2273. PubMed ID: 32105488
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Learning (from) the Electron Density: Transferability, Conformational and Chemical Diversity.
    Fabrizio A; Briling K; Grisafi A; Corminboeuf C
    Chimia (Aarau); 2020 Apr; 74(4):232-236. PubMed ID: 32331538
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Predicting and Understanding Non-Covalent Interactions Using Novel Forms of Symmetry-Adapted Perturbation Theory.
    Carter-Fenk K; Lao KU; Herbert JM
    Acc Chem Res; 2021 Oct; 54(19):3679-3690. PubMed ID: 34550669
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Machine Learning Adaptive Basis Sets for Efficient Large Scale Density Functional Theory Simulation.
    Schütt O; VandeVondele J
    J Chem Theory Comput; 2018 Aug; 14(8):4168-4175. PubMed ID: 29957943
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Accurate molecular polarizabilities with coupled cluster theory and machine learning.
    Wilkins DM; Grisafi A; Yang Y; Lao KU; DiStasio RA; Ceriotti M
    Proc Natl Acad Sci U S A; 2019 Feb; 116(9):3401-3406. PubMed ID: 30733292
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transferable Atom-Centered Potentials for the Correction of Basis Set Incompleteness Errors in Density-Functional Theory.
    Otero-de-la-Roza A; DiLabio GA
    J Chem Theory Comput; 2017 Aug; 13(8):3505-3524. PubMed ID: 28636358
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Improved accuracy and transferability of molecular-orbital-based machine learning: Organics, transition-metal complexes, non-covalent interactions, and transition states.
    Husch T; Sun J; Cheng L; Lee SJR; Miller TF
    J Chem Phys; 2021 Feb; 154(6):064108. PubMed ID: 33588560
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fragment quantum mechanical calculation of proteins and its applications.
    He X; Zhu T; Wang X; Liu J; Zhang JZ
    Acc Chem Res; 2014 Sep; 47(9):2748-57. PubMed ID: 24851673
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Accurate Relative Energies and Binding Energies of Large Ice-Liquid Water Clusters and Periodic Structures.
    Zhang L; Li W; Fang T; Li S
    J Phys Chem A; 2017 May; 121(20):4030-4038. PubMed ID: 28414444
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ab initio quantum mechanics/molecular mechanics method with periodic boundaries employing Ewald summation technique to electron-charge interaction: Treatment of the surface-dipole term.
    Kawashima Y; Ishimura K; Shiga M
    J Chem Phys; 2019 Mar; 150(12):124103. PubMed ID: 30927895
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Elephant in the Room of Density Functional Theory Calculations.
    Jensen SR; Saha S; Flores-Livas JA; Huhn W; Blum V; Goedecker S; Frediani L
    J Phys Chem Lett; 2017 Apr; 8(7):1449-1457. PubMed ID: 28291362
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Embedded Atom Neural Network Potentials: Efficient and Accurate Machine Learning with a Physically Inspired Representation.
    Zhang Y; Hu C; Jiang B
    J Phys Chem Lett; 2019 Sep; 10(17):4962-4967. PubMed ID: 31397157
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High accuracy ab initio studies of electron-densities for the ground state of Be-like atomic systems.
    Komasa J; Słupski R; Jankowski K; Wasilewski J; Teale AM
    J Chem Phys; 2013 Apr; 138(16):164306. PubMed ID: 23635137
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A self-consistent coulomb bath model using density fitting.
    Chen X; Qu Z; Suo B; Gao J
    J Comput Chem; 2020 Jul; 41(18):1698-1708. PubMed ID: 32369627
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Subshell fitting of relativistic atomic core electron densities for use in QTAIM analyses of ECP-based wave functions.
    Keith TA; Frisch MJ
    J Phys Chem A; 2011 Nov; 115(45):12879-94. PubMed ID: 21780749
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.