These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 34669415)

  • 21. All-atom semiclassical dynamics study of quantum coherence in photosynthetic Fenna-Matthews-Olson complex.
    Kim HW; Kelly A; Park JW; Rhee YM
    J Am Chem Soc; 2012 Jul; 134(28):11640-51. PubMed ID: 22708971
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantitative Evaluation of Site Energies and Their Fluctuations of Pigments in the Fenna-Matthews-Olson Complex with an Efficient Method for Generating a Potential Energy Surface.
    Higashi M; Saito S
    J Chem Theory Comput; 2016 Aug; 12(8):4128-37. PubMed ID: 27385191
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Photosynthesis tunes quantum-mechanical mixing of electronic and vibrational states to steer exciton energy transfer.
    Higgins JS; Lloyd LT; Sohail SH; Allodi MA; Otto JP; Saer RG; Wood RE; Massey SC; Ting PC; Blankenship RE; Engel GS
    Proc Natl Acad Sci U S A; 2021 Mar; 118(11):. PubMed ID: 33688046
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Redox Conditions Affect Ultrafast Exciton Transport in Photosynthetic Pigment-Protein Complexes.
    Allodi MA; Otto JP; Sohail SH; Saer RG; Wood RE; Rolczynski BS; Massey SC; Ting PC; Blankenship RE; Engel GS
    J Phys Chem Lett; 2018 Jan; 9(1):89-95. PubMed ID: 29236502
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nature does not rely on long-lived electronic quantum coherence for photosynthetic energy transfer.
    Duan HG; Prokhorenko VI; Cogdell RJ; Ashraf K; Stevens AL; Thorwart M; Miller RJD
    Proc Natl Acad Sci U S A; 2017 Aug; 114(32):8493-8498. PubMed ID: 28743751
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems.
    Engel GS; Calhoun TR; Read EL; Ahn TK; Mancal T; Cheng YC; Blankenship RE; Fleming GR
    Nature; 2007 Apr; 446(7137):782-6. PubMed ID: 17429397
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of Force Fields and Quantum Chemistry Approach on Spectral Densities of BChl a in Solution and in FMO Proteins.
    Chandrasekaran S; Aghtar M; Valleau S; Aspuru-Guzik A; Kleinekathöfer U
    J Phys Chem B; 2015 Aug; 119(31):9995-10004. PubMed ID: 26156758
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Energy Transfer Dynamics in Light-Harvesting Complex 2 Variants Containing Oxidized B800 Bacteriochlorophyll
    Saga Y; Otsuka Y; Tanaka A; Masaoka Y; Hidaka T; Nagasawa Y
    J Phys Chem B; 2021 Jul; 125(25):6830-6836. PubMed ID: 34139847
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of site-dependent pigment-protein interactions on excitation energy transfer in photosynthetic light harvesting.
    Rivera E; Montemayor D; Masia M; Coker DF
    J Phys Chem B; 2013 May; 117(18):5510-21. PubMed ID: 23597258
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Plasmonic bio-sensing for the Fenna-Matthews-Olson complex.
    Chen GY; Lambert N; Shih YA; Liu MH; Chen YN; Nori F
    Sci Rep; 2017 Jan; 7():39720. PubMed ID: 28045089
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantum transport in the FMO photosynthetic light-harvesting complex.
    Karafyllidis IG
    J Biol Phys; 2017 Jun; 43(2):239-245. PubMed ID: 28378262
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Complex quantum network model of energy transfer in photosynthetic complexes.
    Ai BQ; Zhu SL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 1):061917. PubMed ID: 23367985
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ultrafast absorption difference spectra of the Fenna-Matthews-Olson protein at 19 K: experiment and simulations.
    Buck DR; Savikhin S; Struve WS
    Biophys J; 1997 Jan; 72(1):24-36. PubMed ID: 8994590
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of an FMO variant of Chlorobaculum tepidum carrying bacteriochlorophyll a esterified by geranylgeraniol.
    Wen J; Harada J; Buyle K; Yuan K; Tamiaki H; Oh-Oka H; Loomis RA; Blankenship RE
    Biochemistry; 2010 Jul; 49(26):5455-63. PubMed ID: 20521767
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multipartite entanglement in the Fenna-Matthews-Olson (FMO) pigment-protein complex.
    Thilagam A
    J Chem Phys; 2012 May; 136(17):175104. PubMed ID: 22583269
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Photosynthetic pigment-protein complexes as highly connected networks: implications for robust energy transport.
    Baker LA; Habershon S
    Proc Math Phys Eng Sci; 2017 May; 473(2201):20170112. PubMed ID: 28588417
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Classical master equation for excitonic transport under the influence of an environment.
    Eisfeld A; Briggs JS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 2):046118. PubMed ID: 22680549
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A stochastic surrogate Hamiltonian approach of coherent and incoherent exciton transport in the Fenna-Matthews-Olson complex.
    Renaud N; Ratner MA; Mujica V
    J Chem Phys; 2011 Aug; 135(7):075102. PubMed ID: 21861585
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Coherent wavepackets in the Fenna-Matthews-Olson complex are robust to excitonic-structure perturbations caused by mutagenesis.
    Maiuri M; Ostroumov EE; Saer RG; Blankenship RE; Scholes GD
    Nat Chem; 2018 Feb; 10(2):177-183. PubMed ID: 29359758
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Perturbation of bacteriochlorophyll molecules in Fenna-Matthews-Olson protein complexes through mutagenesis of cysteine residues.
    Saer R; Orf GS; Lu X; Zhang H; Cuneo MJ; Myles DAA; Blankenship RE
    Biochim Biophys Acta; 2016 Sep; 1857(9):1455-1463. PubMed ID: 27114180
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.