These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Community analysis of plant biomass-degrading microorganisms from Obsidian Pool, Yellowstone National Park. Vishnivetskaya TA; Hamilton-Brehm SD; Podar M; Mosher JJ; Palumbo AV; Phelps TJ; Keller M; Elkins JG Microb Ecol; 2015 Feb; 69(2):333-45. PubMed ID: 25319238 [TBL] [Abstract][Full Text] [Related]
3. Deconstruction of plant biomass by a Cellulomonas strain isolated from an ultra-basic (lignin-stripping) spring. Kamennaya NA; Gray J; Ito S; Kainuma M; Nguyen MV; Khilyas IV; Birarda G; Bernie F; Hunt M; Vasadia D; Lin J; Holman HY; Torok T; Cohen MF Arch Microbiol; 2020 Jul; 202(5):1077-1084. PubMed ID: 32030461 [TBL] [Abstract][Full Text] [Related]
4. Unraveling the roles of coastal bacterial consortia in degradation of various lignocellulosic substrates. Peng Q; Lin L; Tu Q; Wang X; Zhou Y; Chen J; Jiao N; Zhou J mSystems; 2023 Aug; 8(4):e0128322. PubMed ID: 37417747 [TBL] [Abstract][Full Text] [Related]
5. Isolation of Clostridium from Yunnan-Tibet hot springs and description of Clostridium thermarum sp. nov. with lignocellulosic ethanol production. Liu L; Jiao JY; Fang BZ; Lv AP; Ming YZ; Li MM; Salam N; Li WJ Syst Appl Microbiol; 2020 Sep; 43(5):126104. PubMed ID: 32847779 [TBL] [Abstract][Full Text] [Related]
6. Longitudinal analysis of the Five Sisters hot springs in Yellowstone National Park reveals a dynamic thermoalkaline environment. Peach JT; Mueller RC; Skorupa DJ; Mesle MM; Kanta S; Boltinghouse E; Sharon B; Copié V; Bothner B; Peyton BM Sci Rep; 2022 Nov; 12(1):18707. PubMed ID: 36333441 [TBL] [Abstract][Full Text] [Related]
7. Isolation of bacterial strains able to metabolize lignin and lignin-related compounds. Tian JH; Pourcher AM; Peu P Lett Appl Microbiol; 2016 Jul; 63(1):30-7. PubMed ID: 27125750 [TBL] [Abstract][Full Text] [Related]
8. Optimization and Characterization of an Ultra-Thermostable, Acidophilic, Cellulase-Free Xylanase from a New Obligate Thermophilic Geobacillus thermoleovorans AKNT10 and its Application in Saccharification of Wheat Bran. Kumar A; Bhanja Dey T; Mishra AK; Meena KR; Mohapatra HS; Kuhad RC Curr Microbiol; 2024 Jul; 81(9):287. PubMed ID: 39075266 [TBL] [Abstract][Full Text] [Related]
9. Isolation and distribution of a novel iron-oxidizing crenarchaeon from acidic geothermal springs in Yellowstone National Park. Kozubal M; Macur RE; Korf S; Taylor WP; Ackerman GG; Nagy A; Inskeep WP Appl Environ Microbiol; 2008 Feb; 74(4):942-9. PubMed ID: 18083851 [TBL] [Abstract][Full Text] [Related]
11. Characterization of a Thermophilic Lignocellulose-Degrading Microbial Consortium with High Extracellular Xylanase Activity. Zhang D; Wang Y; Zhang C; Zheng D; Guo P; Cui Z J Microbiol Biotechnol; 2018 Feb; 28(2):305-313. PubMed ID: 29429304 [TBL] [Abstract][Full Text] [Related]
12. Production and characterization of exopolysaccharides by Geobacillus thermodenitrificans ArzA-6 and Geobacillus toebii ArzA-8 strains isolated from an Armenian geothermal spring. Panosyan H; Di Donato P; Poli A; Nicolaus B Extremophiles; 2018 Sep; 22(5):725-737. PubMed ID: 29779131 [TBL] [Abstract][Full Text] [Related]
13. Bioelectrochemical approach for enhancing lignocellulose degradation and biofilm formation in Geobacillus strain WSUCF1. Rathinam NK; Gorky ; Bibra M; Salem DR; Sani RK Bioresour Technol; 2020 Jan; 295():122271. PubMed ID: 31677806 [TBL] [Abstract][Full Text] [Related]
14. Engineering Ligninolytic Consortium for Bioconversion of Lignocelluloses to Ethanol and Chemicals. Bilal M; Nawaz MZ; Iqbal HMN; Hou J; Mahboob S; Al-Ghanim KA; Cheng H Protein Pept Lett; 2018; 25(2):108-119. PubMed ID: 29359652 [TBL] [Abstract][Full Text] [Related]
15. Isolation, characterization, and ecology of sulfur-respiring crenarchaea inhabiting acid-sulfate-chloride-containing geothermal springs in Yellowstone National Park. Boyd ES; Jackson RA; Encarnacion G; Zahn JA; Beard T; Leavitt WD; Pi Y; Zhang CL; Pearson A; Geesey GG Appl Environ Microbiol; 2007 Oct; 73(20):6669-77. PubMed ID: 17720836 [TBL] [Abstract][Full Text] [Related]
16. Extracellular ligninases production and lignin degradation by Paenibacillus polymyxa. Edith Ayala-Rodríguez A; Valdés-Rodríguez S; Enrique Olalde-Mathieu V; Arias-Padró M; Reyes-Moreno C; Olalde-Portugal V J Gen Appl Microbiol; 2024 Jul; 70(1):. PubMed ID: 38104982 [TBL] [Abstract][Full Text] [Related]
17. Lignocellulose-Degrading Microbial Communities in Landfill Sites Represent a Repository of Unexplored Biomass-Degrading Diversity. Ransom-Jones E; McCarthy AJ; Haldenby S; Doonan J; McDonald JE mSphere; 2017; 2(4):. PubMed ID: 28776044 [TBL] [Abstract][Full Text] [Related]
18. Overview of Lignocellulolytic Enzyme Systems with Special Reference to Valorization of Lignocellulosic Biomass. Qaiser H; Kaleem A; Abdullah R; Iqtedar M; Hoessli DC Protein Pept Lett; 2021; 28(12):1349-1364. PubMed ID: 34749601 [TBL] [Abstract][Full Text] [Related]
19. Microbial bioprospecting for lignocellulose degradation at a unique Greek environment. Georgiadou DN; Avramidis P; Ioannou E; Hatzinikolaou DG Heliyon; 2021 Jun; 7(6):e07122. PubMed ID: 34141913 [TBL] [Abstract][Full Text] [Related]
20. Isolation and Characterization of Novel Lignolytic, Cellulolytic, and Hemicellulolytic Bacteria from Wood-Feeding Termite Cryptotermes brevis. Tsegaye B; Balomajumder C; Roy P Int Microbiol; 2019 Mar; 22(1):29-39. PubMed ID: 30810928 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]