BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 34669730)

  • 1. The cariogenic effect of starch on oral microcosm grown within the dual constant depth film fermenter.
    Roberts JM; Bradshaw DJ; Lynch RJM; Higham SM; Valappil SP
    PLoS One; 2021; 16(10):e0258881. PubMed ID: 34669730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence of an in vitro Coupled Diffusion Mechanism of Lesion Formation within Microcosm Dental Plaque.
    Owens GJ; Lynch RJM; Hope CK; Cooper L; Higham SM; Valappil SP
    Caries Res; 2017; 51(3):188-197. PubMed ID: 28245470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enamel and dentine demineralization by a combination of starch and sucrose in a biofilm - caries model.
    Botelho JN; Villegas-Salinas M; Troncoso-Gajardo P; Giacaman RA; Cury JA
    Braz Oral Res; 2016 May; 30(1):. PubMed ID: 27223133
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microcosm biofilms originating from children with different caries experience have similar cariogenicity under successive sucrose challenges.
    Azevedo MS; van de Sande FH; Romano AR; Cenci MS
    Caries Res; 2011; 45(6):510-7. PubMed ID: 21967836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monitoring the maturation process of a dental microcosm biofilm using the Quantitative Light-induced Fluorescence-Digital (QLF-D).
    Kim YS; Lee ES; Kwon HK; Kim BI
    J Dent; 2014 Jun; 42(6):691-6. PubMed ID: 24657554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Association between the cariogenicity of a dental microcosm biofilm and its red fluorescence detected by Quantitative Light-induced Fluorescence-Digital (QLF-D).
    Lee ES; Kang SM; Ko HY; Kwon HK; Kim BI
    J Dent; 2013 Dec; 41(12):1264-70. PubMed ID: 24012520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of multi-species consortia biofilms of oral bacteria as an enamel and root caries model system.
    Shu M; Wong L; Miller JH; Sissons CH
    Arch Oral Biol; 2000 Jan; 45(1):27-40. PubMed ID: 10669090
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validation of a cariogenic biofilm model by evaluating the effect of fluoride on enamel demineralization.
    Marin LM; Cury JA; Siqueira WL
    J Microbiol Methods; 2022 Jan; 192():106386. PubMed ID: 34848194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of salivary conditioning and sucrose concentration on biofilm-mediated enamel demineralization.
    Ayoub HM; Gregory RL; Tang Q; Lippert F
    J Appl Oral Sci; 2020; 28():e20190501. PubMed ID: 32236356
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Response of carious enamel to TiF
    Comar LP; Souza BM; Martins J; Santos MG; Buzalaf MAR; Magalhães AC
    J Dent; 2017 Aug; 63():81-84. PubMed ID: 28579385
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A three-species biofilm model for the evaluation of enamel and dentin demineralization.
    Cavalcanti YW; Bertolini MM; da Silva WJ; Del-Bel-Cury AA; Tenuta LM; Cury JA
    Biofouling; 2014; 30(5):579-88. PubMed ID: 24730462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of sodium fluoride on oral biofilm microbiota and enamel demineralization.
    Thurnheer T; Belibasakis GN
    Arch Oral Biol; 2018 May; 89():77-83. PubMed ID: 29482049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of fluoridated milk on enamel and root dentin demineralization evaluated by a biofilm caries model.
    Giacaman RA; Muñoz MJ; Ccahuana-Vasquez RA; Muñoz-Sandoval C; Cury JA
    Caries Res; 2012; 46(5):460-6. PubMed ID: 22759448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validation of a Cariogenic Biofilm Model to Evaluate the Effect of Fluoride on Enamel and Root Dentine Demineralization.
    Fernández CE; Tenuta LM; Cury JA
    PLoS One; 2016; 11(1):e0146478. PubMed ID: 26731743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of the Inoculum Source on the Cariogenicity of in vitro Microcosm Biofilms.
    Signori C; van de Sande FH; Maske TT; de Oliveira EF; Cenci MS
    Caries Res; 2016; 50(2):97-103. PubMed ID: 26919718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship between gap size and dentine secondary caries formation assessed in a microcosm biofilm model.
    Cenci MS; Pereira-Cenci T; Cury JA; Ten Cate JM
    Caries Res; 2009; 43(2):97-102. PubMed ID: 19321986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arginine and sodium fluoride affect the microbial composition and reduce biofilm metabolism and enamel mineral loss in an oral microcosm model.
    Sampaio C; Méndez DAC; Buzalaf MAR; Pessan JP; Cruvinel T
    J Dent; 2024 Jun; 145():104997. PubMed ID: 38621525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cariogenic effects of probiotic Lactobacillus rhamnosus GG in a dental biofilm model.
    Schwendicke F; Dörfer C; Kneist S; Meyer-Lueckel H; Paris S
    Caries Res; 2014; 48(3):186-92. PubMed ID: 24480927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of human milk and sucrose on cariogenicity of microcosm biofilms.
    Signori C; Hartwig AD; Silva-Júnior IFD; Correa MB; Azevedo MS; Cenci MS
    Braz Oral Res; 2018 Oct; 32():e109. PubMed ID: 30328901
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of white spot lesions formed on human enamel under microcosm biofilm for different experimental periods.
    Levy FM; Braga AS; Pelá VT; Lavender S; Zhang D; Pilch S; Malheiros Z; Stewart B; Magalhães AC; Buzalaf MAR
    J Appl Oral Sci; 2022; 30():e20210560. PubMed ID: 35384988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.