These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 34669975)

  • 1. Validation of a deterministic linear Boltzmann transport equation solver for rapid CT dose computation using physical dose measurements in pediatric phantoms.
    Principi S; Lu Y; Liu Y; Wang A; Maslowski A; Wareing T; Van Heteren J; Schmidt TG
    Med Phys; 2021 Dec; 48(12):8075-8088. PubMed ID: 34669975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deterministic linear Boltzmann transport equation solver for patient-specific CT dose estimation: Comparison against a Monte Carlo benchmark for realistic scanner configurations and patient models.
    Principi S; Wang A; Maslowski A; Wareing T; Jordan P; Schmidt TG
    Med Phys; 2020 Dec; 47(12):6470-6483. PubMed ID: 32981038
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A fast, linear Boltzmann transport equation solver for computed tomography dose calculation (Acuros CTD).
    Wang A; Maslowski A; Wareing T; Star-Lack J; Schmidt TG
    Med Phys; 2019 Feb; 46(2):925-933. PubMed ID: 30471131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acuros CTS: A fast, linear Boltzmann transport equation solver for computed tomography scatter - Part I: Core algorithms and validation.
    Maslowski A; Wang A; Sun M; Wareing T; Davis I; Star-Lack J
    Med Phys; 2018 May; 45(5):1899-1913. PubMed ID: 29509970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Linear Boltzmann equation solver for voxel-level dosimetry in radiopharmaceutical therapy: Comparison with Monte Carlo and kernel convolution.
    Kayal G; Van B; Andl G; Tu C; Wareing T; Wilderman S; Mikell J; Dewaraja YK
    Med Phys; 2024 Aug; 51(8):5604-5617. PubMed ID: 38436493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High correlation between radiation dose estimates for 256-slice CT obtained by highly parallelized hybrid Monte Carlo computation and solid-state metal-oxide semiconductor field-effect transistor measurements in physical anthropomorphic phantoms.
    Prinsen P; Trattner S; Wiegert J; Gerland EL; Shefer E; Morton T; Thompson CM; Cheng B; Halliburton SS; Einstein AJ
    Med Phys; 2019 Nov; 46(11):5216-5226. PubMed ID: 31442300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Implementation of radiochromic film dosimetry protocol for volumetric dose assessments to various organs during diagnostic CT procedures.
    Brady S; Yoshizumi T; Toncheva G; Frus D
    Med Phys; 2010 Sep; 37(9):4782-92. PubMed ID: 20964198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Monte Carlo based method to estimate radiation dose from multidetector CT (MDCT): cylindrical and anthropomorphic phantoms.
    DeMarco JJ; Cagnon CH; Cody DD; Stevens DM; McCollough CH; O'Daniel J; McNitt-Gray MF
    Phys Med Biol; 2005 Sep; 50(17):3989-4004. PubMed ID: 16177525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A method to acquire CT organ dose map using OSL dosimeters and ATOM anthropomorphic phantoms.
    Zhang D; Li X; Gao Y; Xu XG; Liu B
    Med Phys; 2013 Aug; 40(8):081918. PubMed ID: 23927332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Digital phantom versus patient-specific radiation dosimetry in adult routine thorax CT examinations.
    Papadakis AE; Giannakaki V; Stratakis J; Myronakis M; Zaidi H; Damilakis J
    J Appl Clin Med Phys; 2024 Jul; 25(7):e14389. PubMed ID: 38778565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Patient-specific radiation dose and cancer risk estimation in CT: part I. development and validation of a Monte Carlo program.
    Li X; Samei E; Segars WP; Sturgeon GM; Colsher JG; Toncheva G; Yoshizumi TT; Frush DP
    Med Phys; 2011 Jan; 38(1):397-407. PubMed ID: 21361208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monte Carlo simulations of adult and pediatric computed tomography exams: validation studies of organ doses with physical phantoms.
    Long DJ; Lee C; Tien C; Fisher R; Hoerner MR; Hintenlang D; Bolch WE
    Med Phys; 2013 Jan; 40(1):013901. PubMed ID: 23298124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organ doses and normalized organ doses for various age groups in ultralow dose pediatric C-arm cone-beam CT.
    Papadakis AE; Damilakis J
    Eur Radiol; 2022 Sep; 32(9):5790-5798. PubMed ID: 35364713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mathematical modelling of scanner-specific bowtie filters for Monte Carlo CT dosimetry.
    Kramer R; Cassola VF; Andrade ME; de Araújo MW; Brenner DJ; Khoury HJ
    Phys Med Biol; 2017 Feb; 62(3):781-809. PubMed ID: 28072578
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Organ doses evaluation for chest computed tomography procedures with TL dosimeters: Comparison with Monte Carlo simulations.
    Giansante L; Martins JC; Nersissian DY; Kiers KC; Kay FU; Sawamura MVY; Lee C; Gebrim EMMS; Costa PR
    J Appl Clin Med Phys; 2019 Jan; 20(1):308-320. PubMed ID: 30508315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of organ and effective dose estimations from different Monte Carlo simulation-based software methods in infant CT and comparison with direct phantom measurements.
    Lawson M; Berk K; Badawy M; Qi Y; Kuganesan A; Metcalfe P
    J Appl Clin Med Phys; 2022 Jun; 23(6):e13625. PubMed ID: 35522240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Patient-specific CT dosimetry calculation: a feasibility study.
    Fearon T; Xie H; Cheng JY; Ning H; Zhuge Y; Miller RW
    J Appl Clin Med Phys; 2011 Nov; 12(4):3589. PubMed ID: 22089016
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A real-time Monte Carlo tool for individualized dose estimations in clinical CT.
    Sharma S; Kapadia A; Fu W; Abadi E; Segars WP; Samei E
    Phys Med Biol; 2019 Nov; 64(21):215020. PubMed ID: 31539892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Organ doses from CT localizer radiographs: Development, validation, and application of a Monte Carlo estimation technique.
    Hoye J; Sharma S; Zhang Y; Fu W; Ria F; Kapadia A; Segars WP; Wilson J; Samei E
    Med Phys; 2019 Nov; 46(11):5262-5272. PubMed ID: 31442324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reference dataset for benchmarking fetal doses derived from Monte Carlo simulations of CT exams.
    Hardy AJ; Bostani M; Angel E; Cagnon C; Sechopoulos I; McNitt-Gray MF
    Med Phys; 2021 Jan; 48(1):523-532. PubMed ID: 33128259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.