These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Excited-state dynamics of all-trans protonated retinal Schiff base in CRABPII-based rhodopsin mimics. Li G; Hu Y; Pei S; Meng J; Wang J; Wang J; Yue S; Wang Z; Wang S; Liu X; Weng Y; Peng X; Zhao Q Biophys J; 2022 Nov; 121(21):4109-4118. PubMed ID: 36181266 [TBL] [Abstract][Full Text] [Related]
23. Unique Photochemistry Observed in a New Microbial Rhodopsin. Kataoka C; Inoue K; Katayama K; Béjà O; Kandori H J Phys Chem Lett; 2019 Sep; 10(17):5117-5121. PubMed ID: 31433641 [TBL] [Abstract][Full Text] [Related]
24. Raman spectroscopy of a near infrared absorbing proteorhodopsin: Similarities to the bacteriorhodopsin O photointermediate. Mei G; Mamaeva N; Ganapathy S; Wang P; DeGrip WJ; Rothschild KJ PLoS One; 2018; 13(12):e0209506. PubMed ID: 30586409 [TBL] [Abstract][Full Text] [Related]
25. Weakened coupling of conserved arginine to the proteorhodopsin chromophore and its counterion implies structural differences from bacteriorhodopsin. Partha R; Krebs R; Caterino TL; Braiman MS Biochim Biophys Acta; 2005 Jun; 1708(1):6-12. PubMed ID: 15949979 [TBL] [Abstract][Full Text] [Related]
26. Low-temperature Raman spectroscopy reveals small chromophore distortion in primary photointermediate of proteorhodopsin. Fujisawa T; Abe M; Tamogami J; Kikukawa T; Kamo N; Unno M FEBS Lett; 2018 Sep; 592(18):3054-3061. PubMed ID: 30098005 [TBL] [Abstract][Full Text] [Related]
27. Difference FTIR Spectroscopy of Jumping Spider Rhodopsin-1 at 77 K. Hanai S; Nagata T; Katayama K; Inukai S; Koyanagi M; Inoue K; Terakita A; Kandori H Biochemistry; 2023 Apr; 62(8):1347-1359. PubMed ID: 37001008 [TBL] [Abstract][Full Text] [Related]
28. Microsolvation Effects in the Spectral Tuning of Heliorhodopsin. Wijesiri K; Gascón JA J Phys Chem B; 2022 Aug; 126(31):5803-5809. PubMed ID: 35894868 [TBL] [Abstract][Full Text] [Related]
29. Ion-pumping microbial rhodopsin protein classification by machine learning approach. Selvaraj MK; Thakur A; Kumar M; Pinnaka AK; Suri CR; Siddhardha B; Elumalai SP BMC Bioinformatics; 2023 Jan; 24(1):29. PubMed ID: 36707759 [TBL] [Abstract][Full Text] [Related]
30. The trans-cis isomerization reaction dynamics in sensory rhodopsin II by femtosecond time-resolved midinfrared spectroscopy: chromophore and protein dynamics. Diller R; Jakober R; Schumann C; Peters F; Klare JP; Engelhard M Biopolymers; 2006 Jul; 82(4):358-62. PubMed ID: 16475156 [TBL] [Abstract][Full Text] [Related]
31. Role of Thr82 for the unique photochemistry of TAT rhodopsin. Sugimoto T; Katayama K; Kandori H Biophys Physicobiol; 2021; 18():108-115. PubMed ID: 34026400 [TBL] [Abstract][Full Text] [Related]
33. Bidirectional Photochemistry of Antarctic Microbial Rhodopsin: Emerging Trend of Ballistic Photoisomerization from the 13- Malakar P; Das I; Bhattacharya S; Harris A; Sheves M; Brown LS; Ruhman S J Phys Chem Lett; 2022 Sep; 13(34):8134-8140. PubMed ID: 36000820 [TBL] [Abstract][Full Text] [Related]
34. Strongly Hydrogen-Bonded Schiff Base and Adjoining Polyene Twisting in the Retinal Chromophore of Schizorhodopsins. Shionoya T; Singh M; Mizuno M; Kandori H; Mizutani Y Biochemistry; 2021 Oct; 60(41):3050-3057. PubMed ID: 34601881 [TBL] [Abstract][Full Text] [Related]
35. Covalent Bond between the Lys-255 Residue and the Main Chain Is Responsible for Stable Retinal Chromophore Binding and Sodium-Pumping Activity of Ochiai S; Ichikawa Y; Tomida S; Furutani Y Biochemistry; 2023 Jun; 62(12):1849-1857. PubMed ID: 37243673 [TBL] [Abstract][Full Text] [Related]
36. A Proteorhodopsin-Related Photosensor Expands the Repertoire of Structural Motifs Employed by Sensory Rhodopsins. Saliminasab M; Yamazaki Y; Palmateer A; Harris A; Schubert L; Langner P; Heberle J; Bondar AN; Brown LS J Phys Chem B; 2023 Sep; 127(37):7872-7886. PubMed ID: 37694950 [TBL] [Abstract][Full Text] [Related]
37. Resonance Raman Investigation of the Chromophore Structure of Heliorhodopsins. Otomo A; Mizuno M; Singh M; Shihoya W; Inoue K; Nureki O; Béjà O; Kandori H; Mizutani Y J Phys Chem Lett; 2018 Nov; 9(22):6431-6436. PubMed ID: 30351947 [TBL] [Abstract][Full Text] [Related]
38. Multiple functions of Schiff base counterion in rhodopsins. Tsutsui K; Shichida Y Photochem Photobiol Sci; 2010 Nov; 9(11):1426-34. PubMed ID: 20842311 [TBL] [Abstract][Full Text] [Related]
39. Asp76 is the Schiff base counterion and proton acceptor in the proton-translocating form of sensory rhodopsin I. Rath P; Spudich E; Neal DD; Spudich JL; Rothschild KJ Biochemistry; 1996 May; 35(21):6690-6. PubMed ID: 8639619 [TBL] [Abstract][Full Text] [Related]
40. Characterisation of Schiff base and chromophore in green proteorhodopsin by solid-state NMR. Pfleger N; Lorch M; Woerner AC; Shastri S; Glaubitz C J Biomol NMR; 2008 Jan; 40(1):15-21. PubMed ID: 17968661 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]