BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

423 related articles for article (PubMed ID: 34670200)

  • 1. Biomimetic 3D-printed PCL scaffold containing a high concentration carbonated-nanohydroxyapatite with immobilized-collagen for bone tissue engineering: enhanced bioactivity and physicomechanical characteristics.
    Moghaddaszadeh A; Seddiqi H; Najmoddin N; Abbasi Ravasjani S; Klein-Nulend J
    Biomed Mater; 2021 Oct; 16(6):. PubMed ID: 34670200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Osteogenic Activity on NaOH-Etched Three-Dimensional-Printed Poly-ɛ-Caprolactone Scaffolds in Perfusion or Spinner Flask Bioreactor.
    Seddiqi H; Abbasi-Ravasjani S; Saatchi A; Amoabediny G; Zandieh-Doulabi B; Jin J; Klein-Nulend J
    Tissue Eng Part C Methods; 2023 Jun; 29(6):230-241. PubMed ID: 37253166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced osteogenic activity by MC3T3-E1 pre-osteoblasts on chemically surface-modified poly(ε-caprolactone) 3D-printed scaffolds compared to RGD immobilized scaffolds.
    Zamani Y; Mohammadi J; Amoabediny G; Visscher DO; Helder MN; Zandieh-Doulabi B; Klein-Nulend J
    Biomed Mater; 2018 Nov; 14(1):015008. PubMed ID: 30421722
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sulfated carboxymethyl cellulose and carboxymethyl κ-carrageenan immobilization on 3D-printed poly-ε-caprolactone scaffolds differentially promote pre-osteoblast proliferation and osteogenic activity.
    Abbasi-Ravasjani S; Seddiqi H; Moghaddaszadeh A; Ghiasvand ME; Jin J; Oliaei E; Bacabac RG; Klein-Nulend J
    Front Bioeng Biotechnol; 2022; 10():957263. PubMed ID: 36213076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D-printed poly(Ɛ-caprolactone) scaffold with gradient mechanical properties according to force distribution in the mandible for mandibular bone tissue engineering.
    Zamani Y; Amoabediny G; Mohammadi J; Seddiqi H; Helder MN; Zandieh-Doulabi B; Klein-Nulend J; Koolstra JH
    J Mech Behav Biomed Mater; 2020 Apr; 104():103638. PubMed ID: 32174396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Osteogenesis effect of dynamic mechanical loading on MC3T3-E1 cells in three-dimensional printing biomimetic composite scaffolds].
    Song X; Li H; Li R; Yuan Q; Liu Y; Cheng W; Zhang X
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2018 Apr; 32(4):448-456. PubMed ID: 29806303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facile manufacturing of fused-deposition modeled composite scaffolds for tissue engineering-an embedding model with plasticity for incorporation of additives.
    Manjunath KS; Sridhar K; Gopinath V; Sankar K; Sundaram A; Gupta N; Shiek ASSJ; Shantanu PS
    Biomed Mater; 2020 Dec; 16(1):015028. PubMed ID: 33331292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-Dimensional Printing of Polycaprolactone/Nano-Hydroxyapatite Composite Scaffolds with a Pore Size of 300/500 µm is Histocompatible and Promotes Osteogenesis Using Rabbit Cortical Bone Marrow Stem Cells.
    Yang Y; Qiu B; Zhou Z; Hu C; Li J; Zhou C
    Ann Transplant; 2023 Oct; 28():e940365. PubMed ID: 37904328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrospun polycaprolactone/hydroxyapatite/ZnO nanofibers as potential biomaterials for bone tissue regeneration.
    Shitole AA; Raut PW; Sharma N; Giram P; Khandwekar AP; Garnaik B
    J Mater Sci Mater Med; 2019 Apr; 30(5):51. PubMed ID: 31011810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomimetic Mineralized 3D-Printed Polycaprolactone Scaffold Induced by Self-Adaptive Nanotopology to Accelerate Bone Regeneration.
    Shen HY; Xing F; Shang SY; Jiang K; Kuzmanović M; Huang FW; Liu Y; Luo E; Edeleva M; Cardon L; Huang S; Xiang Z; Xu JZ; Li ZM
    ACS Appl Mater Interfaces; 2024 Apr; 16(15):18658-18670. PubMed ID: 38587811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Osteogenic Differentiation of MSCs on Fibronectin-Coated and nHA-Modified Scaffolds.
    Mohamadyar-Toupkanlou F; Vasheghani-Farahani E; Hanaee-Ahvaz H; Soleimani M; Dodel M; Havasi P; Ardeshirylajimi A; Taherzadeh ES
    ASAIO J; 2017; 63(5):684-691. PubMed ID: 28234642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal Ion Augmented Mussel Inspired Polydopamine Immobilized 3D Printed Osteoconductive Scaffolds for Accelerated Bone Tissue Regeneration.
    Ghorai SK; Dutta A; Roy T; Guha Ray P; Ganguly D; Ashokkumar M; Dhara S; Chattopadhyay S
    ACS Appl Mater Interfaces; 2022 Jun; 14(25):28455-28475. PubMed ID: 35715225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface modification of 3D-printed porous scaffolds via mussel-inspired polydopamine and effective immobilization of rhBMP-2 to promote osteogenic differentiation for bone tissue engineering.
    Lee SJ; Lee D; Yoon TR; Kim HK; Jo HH; Park JS; Lee JH; Kim WD; Kwon IK; Park SA
    Acta Biomater; 2016 Aug; 40():182-191. PubMed ID: 26868173
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface modification of a three-dimensional polycaprolactone scaffold by polydopamine, biomineralization, and BMP-2 immobilization for potential bone tissue applications.
    Park J; Lee SJ; Jung TG; Lee JH; Kim WD; Lee JY; Park SA
    Colloids Surf B Biointerfaces; 2021 Mar; 199():111528. PubMed ID: 33385823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improvement of mechanical strength and osteogenic potential of calcium sulfate-based hydroxyapatite 3-dimensional printed scaffolds by ε-polycarbonate coating.
    Kim BS; Yang SS; Park H; Lee SH; Cho YS; Lee J
    J Biomater Sci Polym Ed; 2017 Sep; 28(13):1256-1270. PubMed ID: 28598722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of nanocomposite/nanofibrous functionally graded biomimetic scaffolds for osteochondral tissue regeneration.
    Hejazi F; Bagheri-Khoulenjani S; Olov N; Zeini D; Solouk A; Mirzadeh H
    J Biomed Mater Res A; 2021 Sep; 109(9):1657-1669. PubMed ID: 33687800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconstructing Critical-Sized Mandibular Defects in a Rabbit Model: Enhancing Angiogenesis and Facilitating Bone Regeneration via a Cell-Loaded 3D-Printed Hydrogel-Ceramic Scaffold Application.
    Sajad Daneshi S; Tayebi L; Talaei-Khozani T; Tavanafar S; Hadaegh AH; Rasoulianboroujeni M; Rastegari B; Asadi-Yousefabad SL; Nammian P; Zare S; Mussin NM; Kaliyev AA; Zhelisbayeva KR; Tanideh N; Tamadon A
    ACS Biomater Sci Eng; 2024 May; 10(5):3316-3330. PubMed ID: 38619014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Osteoinduction and proliferation of bone-marrow stromal cells in three-dimensional poly (ε-caprolactone)/ hydroxyapatite/collagen scaffolds.
    Wang T; Yang X; Qi X; Jiang C
    J Transl Med; 2015 May; 13():152. PubMed ID: 25952675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D printed porous PLA/nHA composite scaffolds with enhanced osteogenesis and osteoconductivity in vivo for bone regeneration.
    Chen X; Gao C; Jiang J; Wu Y; Zhu P; Chen G
    Biomed Mater; 2019 Sep; 14(6):065003. PubMed ID: 31382255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineer a pre-metastatic niched microenvironment to attract breast cancer cells by utilizing a 3D printed polycaprolactone/nano-hydroxyapatite osteogenic scaffold - An in vitro model system for proof of concept.
    Xiong Q; Zhang N; Zhang M; Wang M; Wang L; Fan Y; Lin CY
    J Biomed Mater Res B Appl Biomater; 2022 Jul; 110(7):1604-1614. PubMed ID: 35112785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.