These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 34670209)
1. Magnetism-controlled assembly of composite stem cell spheroids for the biofabrication of contraction-modulatory 3D tissue. Byun H; Lee S; Jang GN; Lee H; Park S; Shin H Biofabrication; 2021 Nov; 14(1):. PubMed ID: 34670209 [TBL] [Abstract][Full Text] [Related]
2. Fabrication of in vitro 3D mineralized tissue by fusion of composite spheroids incorporating biomineral-coated nanofibers and human adipose-derived stem cells. Ahmad T; Shin HJ; Lee J; Shin YM; Perikamana SKM; Park SY; Jung HS; Shin H Acta Biomater; 2018 Jul; 74():464-477. PubMed ID: 29803004 [TBL] [Abstract][Full Text] [Related]
3. Biofabrication of 3D adipose tissue via assembly of composite stem cell spheroids containing adipo-inductive dual-signal delivery nanofibers. Lee S; Lee J; Choi S; Kim E; Kwon H; Lee J; Kim SM; Shin H Biofabrication; 2024 May; 16(3):. PubMed ID: 38739412 [TBL] [Abstract][Full Text] [Related]
4. Janus magnetic cellular spheroids for vascular tissue engineering. Mattix BM; Olsen TR; Casco M; Reese L; Poole JT; Zhang J; Visconti RP; Simionescu A; Simionescu DT; Alexis F Biomaterials; 2014 Jan; 35(3):949-60. PubMed ID: 24183699 [TBL] [Abstract][Full Text] [Related]
5. Engineering spheroids potentiating cell-cell and cell-ECM interactions by self-assembly of stem cell microlayer. Lee YB; Kim EM; Byun H; Chang HK; Jeong K; Aman ZM; Choi YS; Park J; Shin H Biomaterials; 2018 May; 165():105-120. PubMed ID: 29525264 [TBL] [Abstract][Full Text] [Related]
6. Manipulation of cellular spheroid composition and the effects on vascular tissue fusion. Olsen TR; Mattix B; Casco M; Herbst A; Williams C; Tarasidis A; Simionescu D; Visconti RP; Alexis F Acta Biomater; 2015 Feb; 13():188-98. PubMed ID: 25463485 [TBL] [Abstract][Full Text] [Related]
7. Magnetic nanoparticle loaded human adipose derived mesenchymal cells spheroids in levitated culture. Labusca L; Herea DD; Minuti AE; Stavila C; Danceanu C; Grigoras M; Ababei G; Chiriac H; Lupu N J Biomed Mater Res B Appl Biomater; 2021 May; 109(5):630-642. PubMed ID: 32940420 [TBL] [Abstract][Full Text] [Related]
8. Fabrication of core-shell spheroids as building blocks for engineering 3D complex vascularized tissue. Kim EM; Lee YB; Kim SJ; Park J; Lee J; Kim SW; Park H; Shin H Acta Biomater; 2019 Dec; 100():158-172. PubMed ID: 31542503 [TBL] [Abstract][Full Text] [Related]
9. Engineered biomaterials to guide spheroid formation, function, and fabrication into 3D tissue constructs. Caprio ND; Burdick JA Acta Biomater; 2023 Jul; 165():4-18. PubMed ID: 36167240 [TBL] [Abstract][Full Text] [Related]
10. Stem cell spheroids incorporating fibers coated with adenosine and polydopamine as a modular building blocks for bone tissue engineering. Ahmad T; Byun H; Lee J; Madhurakat Perikamana SK; Shin YM; Kim EM; Shin H Biomaterials; 2020 Feb; 230():119652. PubMed ID: 31787333 [TBL] [Abstract][Full Text] [Related]
11. Engineering Multi-Cellular Spheroids for Tissue Engineering and Regenerative Medicine. Kim SJ; Kim EM; Yamamoto M; Park H; Shin H Adv Healthc Mater; 2020 Dec; 9(23):e2000608. PubMed ID: 32734719 [TBL] [Abstract][Full Text] [Related]
12. Composite Multicellular Spheroids Containing Fibers with Pores and Epigallocatechin Gallate (EGCG) Coating on the Surface for Enhanced Proliferation of Stem Cells. Lee S; Choi S; Byun H; Lee J; Kwon H; Shin H Macromol Biosci; 2022 Dec; 22(12):e2200195. PubMed ID: 36111565 [TBL] [Abstract][Full Text] [Related]
14. Bioassembly of multicellular spheroids to mimic complex tissue structure using surface-modified magnetized nanofibers. Byun H; Lee S; Shin H Biofabrication; 2024 Jan; 16(2):. PubMed ID: 38198701 [TBL] [Abstract][Full Text] [Related]
15. Biological magnetic cellular spheroids as building blocks for tissue engineering. Mattix B; Olsen TR; Gu Y; Casco M; Herbst A; Simionescu DT; Visconti RP; Kornev KG; Alexis F Acta Biomater; 2014 Feb; 10(2):623-9. PubMed ID: 24176725 [TBL] [Abstract][Full Text] [Related]
16. Spheroid model for functional osteogenic evaluation of human adipose derived stem cells. Gurumurthy B; Bierdeman PC; Janorkar AV J Biomed Mater Res A; 2017 Apr; 105(4):1230-1236. PubMed ID: 27943608 [TBL] [Abstract][Full Text] [Related]
17. Scaffolded spheroids as building blocks for bottom-up cartilage tissue engineering show enhanced bioassembly dynamics. Kopinski-Grünwald O; Guillaume O; Ferner T; Schädl B; Ovsianikov A Acta Biomater; 2024 Jan; 174():163-176. PubMed ID: 38065247 [TBL] [Abstract][Full Text] [Related]
18. Osteogenic differentiation of human adipose-derived stem cells in 3D conditions - comparison of spheroids and polystyrene scaffolds. Rumiński S; Kalaszczyńska I; Długosz A; Lewandowska-Szumieł M Eur Cell Mater; 2019 May; 37():382-401. PubMed ID: 31099888 [TBL] [Abstract][Full Text] [Related]
19. Hybrid spheroid microscaffolds as modular tissue units to build macro-tissue assemblies for tissue engineering. Guillaume O; Kopinski-Grünwald O; Weisgrab G; Baumgartner T; Arslan A; Whitmore K; Van Vlierberghe S; Ovsianikov A Acta Biomater; 2023 Jul; 165():72-85. PubMed ID: 35288312 [TBL] [Abstract][Full Text] [Related]
20. Synergistic interplay between human MSCs and HUVECs in 3D spheroids laden in collagen/fibrin hydrogels for bone tissue engineering. Heo DN; Hospodiuk M; Ozbolat IT Acta Biomater; 2019 Sep; 95():348-356. PubMed ID: 30831326 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]