BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 34671028)

  • 41. Profiling Tumor Infiltrating Immune Cells with CIBERSORT.
    Chen B; Khodadoust MS; Liu CL; Newman AM; Alizadeh AA
    Methods Mol Biol; 2018; 1711():243-259. PubMed ID: 29344893
    [TBL] [Abstract][Full Text] [Related]  

  • 42. How powerful are summary-based methods for identifying expression-trait associations under different genetic architectures?
    Veturi Y; Ritchie MD
    Pac Symp Biocomput; 2018; 23():228-239. PubMed ID: 29218884
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Estimation of immune cell content in tumour tissue using single-cell RNA-seq data.
    Schelker M; Feau S; Du J; Ranu N; Klipp E; MacBeath G; Schoeberl B; Raue A
    Nat Commun; 2017 Dec; 8(1):2032. PubMed ID: 29230012
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Benchmarking of cell type deconvolution pipelines for transcriptomics data.
    Avila Cobos F; Alquicira-Hernandez J; Powell JE; Mestdagh P; De Preter K
    Nat Commun; 2020 Nov; 11(1):5650. PubMed ID: 33159064
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Accurate estimation of cell-type composition from gene expression data.
    Tsoucas D; Dong R; Chen H; Zhu Q; Guo G; Yuan GC
    Nat Commun; 2019 Jul; 10(1):2975. PubMed ID: 31278265
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A Bloody Primer: Analysis of RNA-Seq from Tissue Admixtures.
    Shannon CP; Yang CX; Tebbutt SJ
    Methods Mol Biol; 2018; 1712():175-201. PubMed ID: 29224075
    [TBL] [Abstract][Full Text] [Related]  

  • 47. BADGE: a novel Bayesian model for accurate abundance quantification and differential analysis of RNA-Seq data.
    Gu J; Wang X; Halakivi-Clarke L; Clarke R; Xuan J
    BMC Bioinformatics; 2014; 15 Suppl 9(Suppl 9):S6. PubMed ID: 25252852
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Approximate estimation of cell-type resolution transcriptome in bulk tissue through matrix completion.
    Wang W; Zhou X; Wang J; Yao J; Wen H; Wang Y; Sun M; Zhang C; Tao W; Zou J; Ni T
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37529921
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Modelling capture efficiency of single-cell RNA-sequencing data improves inference of transcriptome-wide burst kinetics.
    Tang W; Jørgensen ACS; Marguerat S; Thomas P; Shahrezaei V
    Bioinformatics; 2023 Jul; 39(7):. PubMed ID: 37354494
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Deep autoencoder for interpretable tissue-adaptive deconvolution and cell-type-specific gene analysis.
    Chen Y; Wang Y; Chen Y; Cheng Y; Wei Y; Li Y; Wang J; Wei Y; Chan TF; Li Y
    Nat Commun; 2022 Nov; 13(1):6735. PubMed ID: 36347853
    [TBL] [Abstract][Full Text] [Related]  

  • 51. CDSeqR: fast complete deconvolution for gene expression data from bulk tissues.
    Kang K; Huang C; Li Y; Umbach DM; Li L
    BMC Bioinformatics; 2021 May; 22(1):262. PubMed ID: 34030626
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dataset including whole blood gene expression profiles and matched leukocyte counts with utility for benchmarking cellular deconvolution pipelines.
    O'Connell GC
    BMC Genom Data; 2024 May; 25(1):45. PubMed ID: 38714942
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Gene selection for microarray gene expression classification using Bayesian Lasso quantile regression.
    Algamal ZY; Alhamzawi R; Mohammad Ali HT
    Comput Biol Med; 2018 Jun; 97():145-152. PubMed ID: 29729489
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Detection of differentially expressed genes in discrete single-cell RNA sequencing data using a hurdle model with correlated random effects.
    Sekula M; Gaskins J; Datta S
    Biometrics; 2019 Dec; 75(4):1051-1062. PubMed ID: 31009065
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Semi-CAM: A semi-supervised deconvolution method for bulk transcriptomic data with partial marker gene information.
    Dong L; Kollipara A; Darville T; Zou F; Zheng X
    Sci Rep; 2020 Mar; 10(1):5434. PubMed ID: 32214192
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Computational Deconvolution of Tumor-Infiltrating Immune Components with Bulk Tumor Gene Expression Data.
    Li B; Li T; Liu JS; Liu XS
    Methods Mol Biol; 2020; 2120():249-262. PubMed ID: 32124325
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Applications of single-cell and bulk RNA sequencing in onco-immunology.
    Kuksin M; Morel D; Aglave M; Danlos FX; Marabelle A; Zinovyev A; Gautheret D; Verlingue L
    Eur J Cancer; 2021 May; 149():193-210. PubMed ID: 33866228
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Bayesian estimation of cell type-specific gene expression with prior derived from single-cell data.
    Wang J; Roeder K; Devlin B
    Genome Res; 2021 Oct; 31(10):1807-1818. PubMed ID: 33837133
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A Bayesian framework for the inference of gene regulatory networks from time and pseudo-time series data.
    Sanchez-Castillo M; Blanco D; Tienda-Luna IM; Carrion MC; Huang Y
    Bioinformatics; 2018 Mar; 34(6):964-970. PubMed ID: 29028984
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Endometrial receptivity revisited: endometrial transcriptome adjusted for tissue cellular heterogeneity.
    Suhorutshenko M; Kukushkina V; Velthut-Meikas A; Altmäe S; Peters M; Mägi R; Krjutškov K; Koel M; Codoñer FM; Martinez-Blanch JF; Vilella F; Simón C; Salumets A; Laisk T
    Hum Reprod; 2018 Nov; 33(11):2074-2086. PubMed ID: 30295736
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.