BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 34671065)

  • 1. Dynamic FRET-FLIM based screening of signal transduction pathways.
    Harkes R; Kukk O; Mukherjee S; Klarenbeek J; van den Broek B; Jalink K
    Sci Rep; 2021 Oct; 11(1):20711. PubMed ID: 34671065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time-Domain Fluorescence Lifetime Imaging of cAMP Levels with EPAC-Based FRET Sensors.
    Kukk O; Klarenbeek J; Jalink K
    Methods Mol Biol; 2022; 2483():105-116. PubMed ID: 35286672
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative real-time imaging of intracellular FRET biosensor dynamics using rapid multi-beam confocal FLIM.
    Levitt JA; Poland SP; Krstajic N; Pfisterer K; Erdogan A; Barber PR; Parsons M; Henderson RK; Ameer-Beg SM
    Sci Rep; 2020 Mar; 10(1):5146. PubMed ID: 32198437
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A mTurquoise-based cAMP sensor for both FLIM and ratiometric read-out has improved dynamic range.
    Klarenbeek JB; Goedhart J; Hink MA; Gadella TW; Jalink K
    PLoS One; 2011 Apr; 6(4):e19170. PubMed ID: 21559477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recording intracellular cAMP levels with EPAC-based FRET sensors by fluorescence lifetime imaging.
    Raspe M; Klarenbeek J; Jalink K
    Methods Mol Biol; 2015; 1294():13-24. PubMed ID: 25783874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-Time Measurements of Intracellular cAMP Gradients Using FRET-Based cAMP Nanorulers.
    Kayser C; Lohse MJ; Bock A
    Methods Mol Biol; 2022; 2483():1-13. PubMed ID: 35286666
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid Imaging of BCL-2 Family Interactions in Live Cells Using FLIM-FRET.
    Osterlund EJ; Hirmiz N; Tardif C; Andrews DW
    Methods Mol Biol; 2019; 1877():305-335. PubMed ID: 30536013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fourth-generation epac-based FRET sensors for cAMP feature exceptional brightness, photostability and dynamic range: characterization of dedicated sensors for FLIM, for ratiometry and with high affinity.
    Klarenbeek J; Goedhart J; van Batenburg A; Groenewald D; Jalink K
    PLoS One; 2015; 10(4):e0122513. PubMed ID: 25875503
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Age-Dependent Maturation of iPSC-CMs Leads to the Enhanced Compartmentation of β
    Hasan A; Mohammadi N; Nawaz A; Kodagoda T; Diakonov I; Harding SE; Gorelik J
    Cells; 2020 Oct; 9(10):. PubMed ID: 33053822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Open Source High Content Analysis Utilizing Automated Fluorescence Lifetime Imaging Microscopy.
    Görlitz F; Kelly DJ; Warren SC; Alibhai D; West L; Kumar S; Alexandrov Y; Munro I; Garcia E; McGinty J; Talbot C; Serwa RA; Thinon E; da Paola V; Murray EJ; Stuhmeier F; Neil MA; Tate EW; Dunsby C; French PM
    J Vis Exp; 2017 Jan; (119):. PubMed ID: 28190060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time-domain fluorescence lifetime imaging microscopy: a quantitative method to follow transient protein-protein interactions in living cells.
    Padilla-Parra S; Audugé N; Tramier M; Coppey-Moisan M
    Cold Spring Harb Protoc; 2015 Jun; 2015(6):508-21. PubMed ID: 26034312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative FRET analysis by fast acquisition time domain FLIM at high spatial resolution in living cells.
    Padilla-Parra S; Audugé N; Coppey-Moisan M; Tramier M
    Biophys J; 2008 Sep; 95(6):2976-88. PubMed ID: 18539634
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cyclic AMP control measured in two compartments in HEK293 cells: phosphodiesterase K(M) is more important than phosphodiesterase localization.
    Matthiesen K; Nielsen J
    PLoS One; 2011; 6(9):e24392. PubMed ID: 21931705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative comparison of different fluorescent protein couples for fast FRET-FLIM acquisition.
    Padilla-Parra S; Audugé N; Lalucque H; Mevel JC; Coppey-Moisan M; Tramier M
    Biophys J; 2009 Oct; 97(8):2368-76. PubMed ID: 19843469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical Mapping of cAMP Signaling at the Nanometer Scale.
    Bock A; Annibale P; Konrad C; Hannawacker A; Anton SE; Maiellaro I; Zabel U; Sivaramakrishnan S; Falcke M; Lohse MJ
    Cell; 2020 Sep; 182(6):1519-1530.e17. PubMed ID: 32846156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A feasible add-on upgrade on a commercial two-photon FLIM microscope for optimal FLIM-FRET imaging of CFP-YFP pairs.
    Xu L; Wang L; Zhang Z; Huang ZL
    J Fluoresc; 2013 May; 23(3):543-9. PubMed ID: 23456419
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Confocal FLIM of genetically encoded FRET sensors for quantitative Ca2+ imaging.
    Sauer B; Tian Q; Lipp P; Kaestner L
    Cold Spring Harb Protoc; 2014 Dec; 2014(12):1328-32. PubMed ID: 25447281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FPGA-based multi-channel fluorescence lifetime analysis of Fourier multiplexed frequency-sweeping lifetime imaging.
    Zhao M; Li Y; Peng L
    Opt Express; 2014 Sep; 22(19):23073-85. PubMed ID: 25321778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid global fitting of large fluorescence lifetime imaging microscopy datasets.
    Warren SC; Margineanu A; Alibhai D; Kelly DJ; Talbot C; Alexandrov Y; Munro I; Katan M; Dunsby C; French PM
    PLoS One; 2013; 8(8):e70687. PubMed ID: 23940626
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FLIM-FRET Investigation of Heterogeneous Huntingtin Aggregation in HeLa Cells.
    Lionetti MC; La Porta CAM
    Methods Mol Biol; 2023; 2551():595-604. PubMed ID: 36310227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.