These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 34672029)
1. Workflow for automatic renal perfusion quantification using ASL-MRI and machine learning. Bones IK; Bos C; Moonen C; Hendrikse J; van Stralen M Magn Reson Med; 2022 Feb; 87(2):800-809. PubMed ID: 34672029 [TBL] [Abstract][Full Text] [Related]
2. Robust kidney perfusion mapping in pediatric chronic kidney disease using single-shot 3D-GRASE ASL with optimized retrospective motion correction. Nery F; De Vita E; Clark CA; Gordon I; Thomas DL Magn Reson Med; 2019 May; 81(5):2972-2984. PubMed ID: 30536817 [TBL] [Abstract][Full Text] [Related]
4. Diagnostic value of renal perfusion in patients with chronic kidney disease using 3D arterial spin labeling. Cai YZ; Li ZC; Zuo PL; Pfeuffer J; Li YM; Liu F; Liu RB J Magn Reson Imaging; 2017 Aug; 46(2):589-594. PubMed ID: 28181335 [TBL] [Abstract][Full Text] [Related]
5. Comparison of Prostate MRI Lesion Segmentation Agreement Between Multiple Radiologists and a Fully Automatic Deep Learning System. Schelb P; Tavakoli AA; Tubtawee T; Hielscher T; Radtke JP; Görtz M; Schütz V; Kuder TA; Schimmöller L; Stenzinger A; Hohenfellner M; Schlemmer HP; Bonekamp D Rofo; 2021 May; 193(5):559-573. PubMed ID: 33212541 [TBL] [Abstract][Full Text] [Related]
6. Arterial Spin Labeling MRI for Predicting Microvascular Invasion of T1 Staging Renal Clear Cell Carcinoma Preoperatively. Zhang HM; Wen DG; Wang Y; Bao YG; Yuan Y; Chen YT; Song B Front Oncol; 2021; 11():644975. PubMed ID: 34084743 [TBL] [Abstract][Full Text] [Related]
7. Cascaded deep learning-based auto-segmentation for head and neck cancer patients: Organs at risk on T2-weighted magnetic resonance imaging. Korte JC; Hardcastle N; Ng SP; Clark B; Kron T; Jackson P Med Phys; 2021 Dec; 48(12):7757-7772. PubMed ID: 34676555 [TBL] [Abstract][Full Text] [Related]
8. Reducing inter-observer variability and interaction time of MR liver volumetry by combining automatic CNN-based liver segmentation and manual corrections. Chlebus G; Meine H; Thoduka S; Abolmaali N; van Ginneken B; Hahn HK; Schenk A PLoS One; 2019; 14(5):e0217228. PubMed ID: 31107915 [TBL] [Abstract][Full Text] [Related]
9. Using deep learning to segment breast and fibroglandular tissue in MRI volumes. Dalmış MU; Litjens G; Holland K; Setio A; Mann R; Karssemeijer N; Gubern-Mérida A Med Phys; 2017 Feb; 44(2):533-546. PubMed ID: 28035663 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of a Semi-automatic Right Ventricle Segmentation Method on Short-Axis MR Images. Yilmaz P; Wallecan K; Kristanto W; Aben JP; Moelker A J Digit Imaging; 2018 Oct; 31(5):670-679. PubMed ID: 29524154 [TBL] [Abstract][Full Text] [Related]
12. A self-supervised strategy for fully automatic segmentation of renal dynamic contrast-enhanced magnetic resonance images. Huang W; Li H; Wang R; Zhang X; Wang X; Zhang J Med Phys; 2019 Oct; 46(10):4417-4430. PubMed ID: 31306492 [TBL] [Abstract][Full Text] [Related]
13. Renal perfusion 3-T MR imaging: a comparative study of arterial spin labeling and dynamic contrast-enhanced techniques. Wu WC; Su MY; Chang CC; Tseng WY; Liu KL Radiology; 2011 Dec; 261(3):845-53. PubMed ID: 22095996 [TBL] [Abstract][Full Text] [Related]
14. Inter-study reproducibility of arterial spin labelling magnetic resonance imaging for measurement of renal perfusion in healthy volunteers at 3 Tesla. Gillis KA; McComb C; Foster JE; Taylor AH; Patel RK; Morris ST; Jardine AG; Schneider MP; Roditi GH; Delles C; Mark PB BMC Nephrol; 2014 Jan; 15():23. PubMed ID: 24484613 [TBL] [Abstract][Full Text] [Related]
15. Deep learning for automatic segmentation of vestibular schwannoma: a retrospective study from multi-center routine MRI. Kujawa A; Dorent R; Connor S; Thomson S; Ivory M; Vahedi A; Guilhem E; Wijethilake N; Bradford R; Kitchen N; Bisdas S; Ourselin S; Vercauteren T; Shapey J Front Comput Neurosci; 2024; 18():1365727. PubMed ID: 38784680 [TBL] [Abstract][Full Text] [Related]
16. Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates. Pipitone J; Park MT; Winterburn J; Lett TA; Lerch JP; Pruessner JC; Lepage M; Voineskos AN; Chakravarty MM; Neuroimage; 2014 Nov; 101():494-512. PubMed ID: 24784800 [TBL] [Abstract][Full Text] [Related]
17. Optimization of Fair Arterial Spin Labeling Magnetic Resonance Imaging (ASL-MRI) for Renal Perfusion Quantification in Dogs: Pilot Study. Hillaert A; Sanmiguel Serpa LC; Xu Y; Hesta M; Bogaert S; Vanderperren K; Pullens P Animals (Basel); 2024 Jun; 14(12):. PubMed ID: 38929429 [TBL] [Abstract][Full Text] [Related]
18. Bias and Precision in Magnetic Resonance Imaging-Based Estimates of Renal Blood Flow: Assessment by Triangulation. Alhummiany BA; Shelley D; Saysell M; Olaru MA; Kühn B; Buckley DL; Bailey J; Wroe K; Coupland C; Mansfield MW; Sourbron SP; Sharma K J Magn Reson Imaging; 2022 Apr; 55(4):1241-1250. PubMed ID: 34397124 [TBL] [Abstract][Full Text] [Related]
19. Quantitative renal perfusion measurements in a rat model of acute kidney injury at 3T: testing inter- and intramethodical significance of ASL and DCE-MRI. Zimmer F; Zöllner FG; Hoeger S; Klotz S; Tsagogiorgas C; Krämer BK; Schad LR PLoS One; 2013; 8(1):e53849. PubMed ID: 23308289 [TBL] [Abstract][Full Text] [Related]
20. Automatic myocardial segmentation in dynamic contrast enhanced perfusion MRI using Monte Carlo dropout in an encoder-decoder convolutional neural network. Kim YC; Kim KR; Choe YH Comput Methods Programs Biomed; 2020 Mar; 185():105150. PubMed ID: 31671341 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]