These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 34672316)
1. Can small air bubbles probe very low frother concentration faster? Pawliszak P; Ulaganathan V; Bradshaw-Hajek BH; Miller R; Beattie DA; Krasowska M Soft Matter; 2021 Nov; 17(43):9916-9925. PubMed ID: 34672316 [TBL] [Abstract][Full Text] [Related]
2. The impact and bounce of air bubbles at a flat fluid interface. Manica R; Klaseboer E; Chan DY Soft Matter; 2016 Apr; 12(13):3271-82. PubMed ID: 26924623 [TBL] [Abstract][Full Text] [Related]
3. Effects of Frothers and Oil at Saltwater-Air Interfaces for Oil Separation: Molecular Dynamics Simulations and Experimental Measurements. Chong L; Lai Y; Gray M; Soong Y; Shi F; Duan Y J Phys Chem B; 2017 Jul; 121(27):6699-6707. PubMed ID: 28621535 [TBL] [Abstract][Full Text] [Related]
4. Using Sound To Study the Effect of Frothers on the Breakaway of Air Bubbles at an Underwater Capillary. Chu P; Pax R; Li R; Langlois R; Finch JA Langmuir; 2017 Apr; 33(13):3200-3207. PubMed ID: 28319401 [TBL] [Abstract][Full Text] [Related]
5. Effects of perfluorocarbon gases on the size and stability characteristics of phospholipid-coated microbubbles: osmotic effect versus interfacial film stabilization. Szíjjártó C; Rossi S; Waton G; Krafft MP Langmuir; 2012 Jan; 28(2):1182-9. PubMed ID: 22176688 [TBL] [Abstract][Full Text] [Related]
6. Floatability of polymer materials modulated by frothers. Wang H; Wang CQ; Fu JG Waste Manag; 2013 Dec; 33(12):2623-31. PubMed ID: 24084102 [TBL] [Abstract][Full Text] [Related]
7. Influence of surface active substances on bubble motion and collision with various interfaces. Malysa K; Krasowska M; Krzan M Adv Colloid Interface Sci; 2005 Jun; 114-115():205-25. PubMed ID: 15936293 [TBL] [Abstract][Full Text] [Related]
8. Dynamics of Rising Bubbles and Their Impact with Viscoelastic Fluid Interfaces. Zhang Y; Liu C; Tang X; Dong X; He T; Wang H; Zang D Polymers (Basel); 2022 Jul; 14(14):. PubMed ID: 35890724 [TBL] [Abstract][Full Text] [Related]
9. Effects of N-Alkanol Adsorption on Bubble Acceleration and Local Velocities in Solutions of the Homologous Series from Ethanol to N-Decanol. Krzan M; Chattopadhyay P; Orvalho S; Zednikova M Materials (Basel); 2023 Mar; 16(5):. PubMed ID: 36903239 [TBL] [Abstract][Full Text] [Related]
10. Coalescence of surface bubbles: The crucial role of motion-induced dynamic adsorption layer. Zawala J; Miguet J; Rastogi P; Atasi O; Borkowski M; Scheid B; Fuller GG Adv Colloid Interface Sci; 2023 Jul; 317():102916. PubMed ID: 37269558 [TBL] [Abstract][Full Text] [Related]
11. The rise of bubbles in shear thinning viscoelastic fluids. Chen Q; Restagno F; Langevin D; Salonen A J Colloid Interface Sci; 2022 Jun; 616():360-368. PubMed ID: 35220184 [TBL] [Abstract][Full Text] [Related]
12. Force Balance Model for Bubble Rise, Impact, and Bounce from Solid Surfaces. Manica R; Klaseboer E; Chan DY Langmuir; 2015 Jun; 31(24):6763-72. PubMed ID: 26035016 [TBL] [Abstract][Full Text] [Related]
13. Surfactant solutions and porous substrates: spreading and imbibition. Starov VM Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660 [TBL] [Abstract][Full Text] [Related]
14. Measurements of Static and Dynamic Bubble Surface Tension Using a Deformation-Based Microfluidic Tensiometer. Liu S; Dutcher CS J Phys Chem B; 2021 Dec; 125(51):13916-13927. PubMed ID: 34919401 [TBL] [Abstract][Full Text] [Related]
15. The role of microparticles on the shape and surface tension of static bubbles. Wang H; Brito-Parada PR J Colloid Interface Sci; 2021 Apr; 587():14-23. PubMed ID: 33360886 [TBL] [Abstract][Full Text] [Related]
16. Interactions between animal cells and gas bubbles: The influence of serum and pluronic F68 on the physical properties of the bubble surface. Jordan M; Eppenberger HM; Sucker H; Widmer F; Einsele A Biotechnol Bioeng; 1994 Mar; 43(6):446-54. PubMed ID: 18615740 [TBL] [Abstract][Full Text] [Related]
17. Bubbles with tunable mobility of surfaces in ethanol-NaCl aqueous solutions. Zhang X; Manica R; Tang Y; Liu Q; Xu Z J Colloid Interface Sci; 2019 Nov; 556():345-351. PubMed ID: 31465965 [TBL] [Abstract][Full Text] [Related]
18. Effect of Particle Size on the Rising Behavior of Particle-Laden Bubbles. Wang P; Cilliers JJ; Neethling SJ; Brito-Parada PR Langmuir; 2019 Mar; 35(10):3680-3687. PubMed ID: 30785756 [TBL] [Abstract][Full Text] [Related]
19. Bubble rise velocities and drag coefficients in non-Newtonian polysaccharide solutions. Margaritis A; te Bokkel DW; Karamanev DG Biotechnol Bioeng; 1999 Aug; 64(3):257-66. PubMed ID: 10397862 [TBL] [Abstract][Full Text] [Related]
20. Theory of non-equilibrium force measurements involving deformable drops and bubbles. Chan DY; Klaseboer E; Manica R Adv Colloid Interface Sci; 2011 Jul; 165(2):70-90. PubMed ID: 21257141 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]