These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 34672333)

  • 21. Graph embedding-based novel protein interaction prediction via higher-order graph convolutional network.
    Xiao Z; Deng Y
    PLoS One; 2020; 15(9):e0238915. PubMed ID: 32970681
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Predicting miRNA-disease associations via learning multimodal networks and fusing mixed neighborhood information.
    Lou Z; Cheng Z; Li H; Teng Z; Liu Y; Tian Z
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35524503
    [TBL] [Abstract][Full Text] [Related]  

  • 23. SSLpheno: a self-supervised learning approach for gene-phenotype association prediction using protein-protein interactions and gene ontology data.
    Bi X; Liang W; Zhao Q; Wang J
    Bioinformatics; 2023 Nov; 39(11):. PubMed ID: 37941450
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A deep dilated convolutional residual network for predicting interchain contacts of protein homodimers.
    Roy RS; Quadir F; Soltanikazemi E; Cheng J
    Bioinformatics; 2022 Mar; 38(7):1904-1910. PubMed ID: 35134816
    [TBL] [Abstract][Full Text] [Related]  

  • 25. MVGCN: data integration through multi-view graph convolutional network for predicting links in biomedical bipartite networks.
    Fu H; Huang F; Liu X; Qiu Y; Zhang W
    Bioinformatics; 2022 Jan; 38(2):426-434. PubMed ID: 34499148
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A unified deep semi-supervised graph learning scheme based on nodes re-weighting and manifold regularization.
    Dornaika F; Bi J; Zhang C
    Neural Netw; 2023 Jan; 158():188-196. PubMed ID: 36462365
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deep convolutional networks for quality assessment of protein folds.
    Derevyanko G; Grudinin S; Bengio Y; Lamoureux G
    Bioinformatics; 2018 Dec; 34(23):4046-4053. PubMed ID: 29931128
    [TBL] [Abstract][Full Text] [Related]  

  • 28. TransformerGO: predicting protein-protein interactions by modelling the attention between sets of gene ontology terms.
    Ieremie I; Ewing RM; Niranjan M
    Bioinformatics; 2022 Apr; 38(8):2269-2277. PubMed ID: 35176146
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ensembling graph attention networks for human microbe-drug association prediction.
    Long Y; Wu M; Liu Y; Kwoh CK; Luo J; Li X
    Bioinformatics; 2020 Dec; 36(Suppl_2):i779-i786. PubMed ID: 33381844
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hierarchical deep learning for predicting GO annotations by integrating protein knowledge.
    Merino GA; Saidi R; Milone DH; Stegmayer G; Martin MJ
    Bioinformatics; 2022 Sep; 38(19):4488-4496. PubMed ID: 35929781
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Predicting functions of maize proteins using graph convolutional network.
    Zhou G; Wang J; Zhang X; Guo M; Yu G
    BMC Bioinformatics; 2020 Dec; 21(Suppl 16):420. PubMed ID: 33323113
    [TBL] [Abstract][Full Text] [Related]  

  • 32. FCGCNMDA: predicting miRNA-disease associations by applying fully connected graph convolutional networks.
    Li J; Li Z; Nie R; You Z; Bao W
    Mol Genet Genomics; 2020 Sep; 295(5):1197-1209. PubMed ID: 32500265
    [TBL] [Abstract][Full Text] [Related]  

  • 33. PFresGO: an attention mechanism-based deep-learning approach for protein annotation by integrating gene ontology inter-relationships.
    Pan T; Li C; Bi Y; Wang Z; Gasser RB; Purcell AW; Akutsu T; Webb GI; Imoto S; Song J
    Bioinformatics; 2023 Mar; 39(3):. PubMed ID: 36794913
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Neural inductive matrix completion with graph convolutional networks for miRNA-disease association prediction.
    Li J; Zhang S; Liu T; Ning C; Zhang Z; Zhou W
    Bioinformatics; 2020 Apr; 36(8):2538-2546. PubMed ID: 31904845
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Predicting lncRNA-disease associations using network topological similarity based on deep mining heterogeneous networks.
    Zhang H; Liang Y; Peng C; Han S; Du W; Li Y
    Math Biosci; 2019 Sep; 315():108229. PubMed ID: 31323239
    [TBL] [Abstract][Full Text] [Related]  

  • 36. PDMDA: predicting deep-level miRNA-disease associations with graph neural networks and sequence features.
    Yan C; Duan G; Li N; Zhang L; Wu FX; Wang J
    Bioinformatics; 2022 Apr; 38(8):2226-2234. PubMed ID: 35150255
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structure-aware protein-protein interaction site prediction using deep graph convolutional network.
    Yuan Q; Chen J; Zhao H; Zhou Y; Yang Y
    Bioinformatics; 2021 Dec; 38(1):125-132. PubMed ID: 34498061
    [TBL] [Abstract][Full Text] [Related]  

  • 38. MVGCNMDA: Multi-view Graph Augmentation Convolutional Network for Uncovering Disease-Related Microbes.
    Hua M; Yu S; Liu T; Yang X; Wang H
    Interdiscip Sci; 2022 Sep; 14(3):669-682. PubMed ID: 35428964
    [TBL] [Abstract][Full Text] [Related]  

  • 39. GLIDER: function prediction from GLIDE-based neighborhoods.
    Devkota K; Schmidt H; Werenski M; Murphy JM; Erden M; Arsenescu V; Cowen LJ
    Bioinformatics; 2022 Jun; 38(13):3395-3406. PubMed ID: 35575379
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Drug repositioning with adaptive graph convolutional networks.
    Sun X; Jia X; Lu Z; Tang J; Li M
    Bioinformatics; 2024 Jan; 40(1):. PubMed ID: 38070161
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.