These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
357 related articles for article (PubMed ID: 34672525)
1. Room-Temperature Direct Synthesis of PbSe Quantum Dot Inks for High-Detectivity Near-Infrared Photodetectors. Peng M; Liu Y; Li F; Hong X; Liu Y; Wen Z; Liu Z; Ma W; Sun X ACS Appl Mater Interfaces; 2021 Nov; 13(43):51198-51204. PubMed ID: 34672525 [TBL] [Abstract][Full Text] [Related]
2. Ultrasensitive Solution-Processed Broadband PbSe Photodetectors through Photomultiplication Effect. Zhu T; Zheng L; Yao X; Liu L; Huang F; Cao Y; Gong X ACS Appl Mater Interfaces; 2019 Mar; 11(9):9205-9212. PubMed ID: 30720266 [TBL] [Abstract][Full Text] [Related]
3. Stability enhancement of PbSe quantum dots via post-synthetic ammonium chloride treatment for a high-performance infrared photodetector. Fu C; Wang H; Song T; Zhang L; Li W; He B; sulaman M; Yang S; Zou B Nanotechnology; 2016 Feb; 27(6):065201. PubMed ID: 26684002 [TBL] [Abstract][Full Text] [Related]
4. Highly Responsive Mid-Infrared Metamaterial Enhanced Heterostructure Photodetector Formed out of Sintered PbSe/PbS Colloidal Quantum Dots. Schwanninger R; Koepfli SM; Yarema O; Dorodnyy A; Yarema M; Moser A; Nashashibi S; Fedoryshyn Y; Wood V; Leuthold J ACS Appl Mater Interfaces; 2023 Mar; 15(8):10847-10857. PubMed ID: 36795914 [TBL] [Abstract][Full Text] [Related]
5. Synergetic enhancement of CsPbI Sulaman M; Yang S; Guo H; Li C; Imran A; Bukhtiar A; Qasim M; Ge Z; Song Y; Jiang Y; Zou B Chem Sci; 2024 Jun; 15(22):8514-8529. PubMed ID: 38846389 [TBL] [Abstract][Full Text] [Related]
6. Solution-processed MoS Sarkar SS; Mukherjee S; Khatri RK; Ray SK Nanotechnology; 2020 Mar; 31(13):135203. PubMed ID: 31804224 [TBL] [Abstract][Full Text] [Related]
7. High-sensitivity hybrid PbSe/ITZO thin film-based phototransistor detecting from 2100 to 2500 nm near-infrared illumination. Shikoh AS; Choi GS; Hong S; Jeong KS; Kim J Nanotechnology; 2022 Jan; 33(16):. PubMed ID: 34983035 [TBL] [Abstract][Full Text] [Related]
8. Lead Selenide (PbSe) Colloidal Quantum Dot Solar Cells with >10% Efficiency. Ahmad W; He J; Liu Z; Xu K; Chen Z; Yang X; Li D; Xia Y; Zhang J; Chen C Adv Mater; 2019 Aug; 31(33):e1900593. PubMed ID: 31222874 [TBL] [Abstract][Full Text] [Related]
9. Air-stable and ultrasensitive solution-cast SWIR photodetectors utilizing modified core/shell colloidal quantum dots. Kwon JB; Kim SW; Kang BH; Yeom SH; Lee WH; Kwon DH; Lee JS; Kang SW Nano Converg; 2020 Aug; 7(1):28. PubMed ID: 32803407 [TBL] [Abstract][Full Text] [Related]
10. PbS Quantum Dots Ink with Months-Long Shelf-Lifetime Enabling Scalable and Efficient Short-Wavelength Infrared Photodetectors. Wang H; Pinna J; Romero DG; Di Mario L; Koushki RM; Kot M; Portale G; Loi MA Adv Mater; 2024 May; 36(19):e2311526. PubMed ID: 38327037 [TBL] [Abstract][Full Text] [Related]
11. Efficiently Passivated PbSe Quantum Dot Solids for Infrared Photovoltaics. Liu S; Xiong K; Wang K; Liang G; Li MY; Tang H; Yang X; Huang Z; Lian L; Tan M; Wang K; Gao L; Song H; Zhang D; Gao J; Lan X; Tang J; Zhang J ACS Nano; 2021 Feb; 15(2):3376-3386. PubMed ID: 33512158 [TBL] [Abstract][Full Text] [Related]
12. A New Passivation Route Leading to Over 8% Efficient PbSe Quantum-Dot Solar Cells via Direct Ion Exchange with Perovskite Nanocrystals. Zhang Z; Chen Z; Yuan L; Chen W; Yang J; Wang B; Wen X; Zhang J; Hu L; Stride JA; Conibeer GJ; Patterson RJ; Huang S Adv Mater; 2017 Nov; 29(41):. PubMed ID: 28922475 [TBL] [Abstract][Full Text] [Related]
13. Surface Engineering of Quantum Dots for Remarkably High Detectivity Photodetectors. Shen T; Li B; Zheng K; Pullerits T; Cao G; Tian J J Phys Chem Lett; 2018 Jun; 9(12):3285-3294. PubMed ID: 29862824 [TBL] [Abstract][Full Text] [Related]
14. PbSe quantum dot solar cells with more than 6% efficiency fabricated in ambient atmosphere. Zhang J; Gao J; Church CP; Miller EM; Luther JM; Klimov VI; Beard MC Nano Lett; 2014 Oct; 14(10):6010-5. PubMed ID: 25203870 [TBL] [Abstract][Full Text] [Related]
15. Probing the Critical Role of Interfaces for Superior Performance in PbS Quantum Dot/Graphene Nanohybrid Broadband Photodetectors. Shultz A; Liu B; Gong M; Vargas HB; Robles Hernandez FC; Wu JZ ACS Appl Mater Interfaces; 2024 Apr; ():. PubMed ID: 38592435 [TBL] [Abstract][Full Text] [Related]
16. Graphene-PbS Quantum Dot Heterostructure for Broadband Photodetector with Enhanced Sensitivity. Qing J; Wang S; Gu S; Lin L; Xie Q; Li D; Huang W; Guo J Sensors (Basel); 2024 Aug; 24(17):. PubMed ID: 39275419 [TBL] [Abstract][Full Text] [Related]
18. Broad-Band Photodetectors Based on Copper Indium Diselenide Quantum Dots in a Methylammonium Lead Iodide Perovskite Matrix. Duan Z; Ning J; Chen M; Xiong Y; Yang W; Xiao F; Kershaw SV; Zhao N; Xiao S; Rogach AL ACS Appl Mater Interfaces; 2020 Aug; 12(31):35201-35210. PubMed ID: 32700521 [TBL] [Abstract][Full Text] [Related]
19. Spray Coated Colloidal Quantum Dot Films for Broadband Photodetectors. Song K; Yuan J; Shen T; Du J; Guo R; Pullerits T; Tian J Nanomaterials (Basel); 2019 Dec; 9(12):. PubMed ID: 31817681 [TBL] [Abstract][Full Text] [Related]
20. Achieving High Responsivity and Detectivity in a Quantum-Dot-in-Perovskite Photodetector. Liu Z; Zhang Z; Zhang X; Li X; Liu Z; Liao G; Shen Y; Wang M Nano Lett; 2023 Feb; 23(4):1181-1188. PubMed ID: 36753056 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]