These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 34672572)

  • 1. Ozone Initiates Human-Derived Emission of Nanocluster Aerosols.
    Yang S; Licina D; Weschler CJ; Wang N; Zannoni N; Li M; Vanhanen J; Langer S; Wargocki P; Williams J; Bekö G
    Environ Sci Technol; 2021 Nov; 55(21):14536-14545. PubMed ID: 34672572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heterogeneous oxidation of squalene film by ozone under various indoor conditions.
    Petrick L; Dubowski Y
    Indoor Air; 2009 Oct; 19(5):381-91. PubMed ID: 19500173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Ozone, Clothing, Temperature, and Humidity on the Total OH Reactivity Emitted from Humans.
    Zannoni N; Li M; Wang N; Ernle L; Bekö G; Wargocki P; Langer S; Weschler CJ; Morrison G; Williams J
    Environ Sci Technol; 2021 Oct; 55(20):13614-13624. PubMed ID: 34591444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Indoor Chemical Human Emissions and Reactivity (ICHEAR) project: Overview of experimental methodology and preliminary results.
    Bekö G; Wargocki P; Wang N; Li M; Weschler CJ; Morrison G; Langer S; Ernle L; Licina D; Yang S; Zannoni N; Williams J
    Indoor Air; 2020 Nov; 30(6):1213-1228. PubMed ID: 32424858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling consortium for chemistry of indoor environments (MOCCIE): integrating chemical processes from molecular to room scales.
    Shiraiwa M; Carslaw N; Tobias DJ; Waring MS; Rim D; Morrison G; Lakey PSJ; Kruza M; von Domaros M; Cummings BE; Won Y
    Environ Sci Process Impacts; 2019 Aug; 21(8):1240-1254. PubMed ID: 31070639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Indoor ozone/human chemistry and ventilation strategies.
    Salvador CM; Bekö G; Weschler CJ; Morrison G; Le Breton M; Hallquist M; Ekberg L; Langer S
    Indoor Air; 2019 Nov; 29(6):913-925. PubMed ID: 31420890
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ozone and limonene in indoor air: a source of submicron particle exposure.
    Wainman T; Zhang J; Weschler CJ; Lioy PJ
    Environ Health Perspect; 2000 Dec; 108(12):1139-45. PubMed ID: 11133393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physical parameters effect on ozone-initiated formation of indoor secondary organic aerosols with emissions from cleaning products.
    Huang Y; Ho KF; Ho SS; Lee SC; Yau PS; Cheng Y
    J Hazard Mater; 2011 Sep; 192(3):1787-94. PubMed ID: 21798666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human Ammonia Emission Rates under Various Indoor Environmental Conditions.
    Li M; Weschler CJ; Bekö G; Wargocki P; Lucic G; Williams J
    Environ Sci Technol; 2020 May; 54(9):5419-5428. PubMed ID: 32233434
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human occupant contribution to secondary aerosol mass in the indoor environment.
    Avery AM; Waring MS; DeCarlo PF
    Environ Sci Process Impacts; 2019 Aug; 21(8):1301-1312. PubMed ID: 30997458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reactions and Products of Squalene and Ozone: A Review.
    Coffaro B; Weisel CP
    Environ Sci Technol; 2022 Jun; 56(12):7396-7411. PubMed ID: 35648815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Indoor secondary organic aerosols formation from ozonolysis of monoterpene: An example of d-limonene with ammonia and potential impacts on pulmonary inflammations.
    Niu X; Ho SSH; Ho KF; Huang Y; Cao J; Shen Z; Sun J; Wang X; Wang Y; Lee S; Huang R
    Sci Total Environ; 2017 Feb; 579():212-220. PubMed ID: 27842959
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Observing ozone chemistry in an occupied residence.
    Liu Y; Misztal PK; Arata C; Weschler CJ; Nazaroff WW; Goldstein AH
    Proc Natl Acad Sci U S A; 2021 Feb; 118(6):. PubMed ID: 33526680
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Novel Insight into the Ozone-Skin Lipid Oxidation Products Observed by Secondary Electrospray Ionization High-Resolution Mass Spectrometry.
    Zeng J; Mekic M; Xu X; Loisel G; Zhou Z; Gligorovski S; Li X
    Environ Sci Technol; 2020 Nov; 54(21):13478-13487. PubMed ID: 33085459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emission Rates of Volatile Organic Compounds from Humans.
    Wang N; Ernle L; Bekö G; Wargocki P; Williams J
    Environ Sci Technol; 2022 Apr; 56(8):4838-4848. PubMed ID: 35389619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical kinetics of multiphase reactions between ozone and human skin lipids: Implications for indoor air quality and health effects.
    Lakey PSJ; Wisthaler A; Berkemeier T; Mikoviny T; Pöschl U; Shiraiwa M
    Indoor Air; 2017 Jul; 27(4):816-828. PubMed ID: 27943451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanocluster Aerosol Emissions of a 3D Printer.
    Poikkimäki M; Koljonen V; Leskinen N; Närhi M; Kangasniemi O; Kausiala O; Dal Maso M
    Environ Sci Technol; 2019 Dec; 53(23):13618-13628. PubMed ID: 31697477
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Secondary organic aerosol formation initiated by α-terpineol ozonolysis in indoor air.
    Yang Y; Waring MS
    Indoor Air; 2016 Dec; 26(6):939-952. PubMed ID: 26609907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of human presence on secondary organic aerosols derived from ozone-initiated chemistry in a simulated office environment.
    Fadeyi MO; Weschler CJ; Tham KW; Wu WY; Sultan ZM
    Environ Sci Technol; 2013 Apr; 47(8):3933-41. PubMed ID: 23488675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in air quality and tropospheric composition due to depletion of stratospheric ozone and interactions with climate.
    Tang X; Wilson SR; Solomon KR; Shao M; Madronich S
    Photochem Photobiol Sci; 2011 Feb; 10(2):280-91. PubMed ID: 21253665
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.