These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 34672622)
21. Toxic Organophosphate Hydrolysis Using Nanofiber-Templated UiO-66-NH Dwyer DB; Lee DT; Boyer S; Bernier WE; Parsons GN; Jones WE ACS Appl Mater Interfaces; 2018 Aug; 10(30):25794-25803. PubMed ID: 29972296 [TBL] [Abstract][Full Text] [Related]
22. Metal-Organic Framework (MOF) Defects under Control: Insights into the Missing Linker Sites and Their Implication in the Reactivity of Zirconium-Based Frameworks. Gutov OV; González Hevia M; Escudero-Adán EC; Shafir A Inorg Chem; 2015 Sep; 54(17):8396-400. PubMed ID: 26291237 [TBL] [Abstract][Full Text] [Related]
23. Photo-assisted enhancement performance for rapid detoxification of chemical warfare agent simulants over versatile ZnIn Yang J; He X; Dai J; Tian R; Yuan D J Hazard Mater; 2021 Sep; 417():126056. PubMed ID: 33992917 [TBL] [Abstract][Full Text] [Related]
24. Construction of imidazole@defective hierarchical porous UiO-66 and fibrous composites for rapid and nonbuffered catalytic hydrolysis of organophosphorus nerve agents. Dai J; Wang D; Yang J; Tian R; Wang Q; Li Y J Colloid Interface Sci; 2023 Dec; 652(Pt B):1156-1169. PubMed ID: 37657216 [TBL] [Abstract][Full Text] [Related]
25. Layer-by-Layer Fabrication of Core-Shell Fe Chen R; Tao CA; Zhang Z; Chen X; Liu Z; Wang J ACS Appl Mater Interfaces; 2019 Nov; 11(46):43156-43165. PubMed ID: 31652043 [TBL] [Abstract][Full Text] [Related]
26. Decomposition of the Simulant 2-Chloroethyl Ethyl Sulfide Blister Agent under Ambient Conditions Using Metal-Organic Frameworks. Kim HH; Seo JY; Kim H; Jeong S; Baek KY; Kim J; Min S; Kim SH; Jeong K ACS Appl Mater Interfaces; 2021 Jan; 13(3):3782-3792. PubMed ID: 33461292 [TBL] [Abstract][Full Text] [Related]
27. Engineering zirconium-based UiO-66 for effective chemical conversion of d-xylose to lactic acid in aqueous condition. Ponchai P; Adpakpang K; Thongratkaew S; Chaipojjana K; Wannapaiboon S; Siwaipram S; Faungnawakij K; Bureekaew S Chem Commun (Camb); 2020 Jul; 56(58):8019-8022. PubMed ID: 32613968 [TBL] [Abstract][Full Text] [Related]
28. Fast and Sustained Degradation of Chemical Warfare Agent Simulants Using Flexible Self-Supported Metal-Organic Framework Filters. Liang H; Yao A; Jiao X; Li C; Chen D ACS Appl Mater Interfaces; 2018 Jun; 10(24):20396-20403. PubMed ID: 29806452 [TBL] [Abstract][Full Text] [Related]
29. Mechanically Enhanced Detoxification of Chemical Warfare Agent Simulants by a Two-Dimensional Piezoresponsive Metal-Organic Framework. Liu Y; Zhao S; Li Y; Huang J; Yang X; Wang J; Tao CA Nanomaterials (Basel); 2024 Mar; 14(7):. PubMed ID: 38607094 [TBL] [Abstract][Full Text] [Related]
30. Nylon-MOF Composites through Postsynthetic Polymerization. Kalaj M; Denny MS; Bentz KC; Palomba JM; Cohen SM Angew Chem Int Ed Engl; 2019 Feb; 58(8):2336-2340. PubMed ID: 30511412 [TBL] [Abstract][Full Text] [Related]
31. In Situ Probes of Capture and Decomposition of Chemical Warfare Agent Simulants by Zr-Based Metal Organic Frameworks. Plonka AM; Wang Q; Gordon WO; Balboa A; Troya D; Guo W; Sharp CH; Senanayake SD; Morris JR; Hill CL; Frenkel AI J Am Chem Soc; 2017 Jan; 139(2):599-602. PubMed ID: 28038315 [TBL] [Abstract][Full Text] [Related]
32. High-Throughput Screening of MOFs for Breakdown of V-Series Nerve Agents. Palomba JM; Harvey SP; Kalaj M; Pimentel BR; DeCoste JB; Peterson GW; Cohen SM ACS Appl Mater Interfaces; 2020 Apr; 12(13):14672-14677. PubMed ID: 31961131 [TBL] [Abstract][Full Text] [Related]
33. Self-Assembled MOF-on-MOF Nanofabrics for Synergistic Detoxification of Chemical Warfare Agent Simulants. Xu R; Wu T; Jiao X; Chen D; Li C ACS Appl Mater Interfaces; 2023 Jun; 15(25):30360-30371. PubMed ID: 37311009 [TBL] [Abstract][Full Text] [Related]
34. Rapid, Biomimetic Degradation of a Nerve Agent Simulant by Incorporating Imidazole Bases into a Metal-Organic Framework. Luo HB; Castro AJ; Wasson MC; Flores W; Farha OK; Liu Y ACS Catal; 2021 Feb; 11(3):1424-1429. PubMed ID: 33614195 [TBL] [Abstract][Full Text] [Related]
35. Effective, Facile, and Selective Hydrolysis of the Chemical Warfare Agent VX Using Zr6-Based Metal-Organic Frameworks. Moon SY; Wagner GW; Mondloch JE; Peterson GW; DeCoste JB; Hupp JT; Farha OK Inorg Chem; 2015 Nov; 54(22):10829-33. PubMed ID: 26505999 [TBL] [Abstract][Full Text] [Related]
36. MOFabric: Electrospun Nanofiber Mats from PVDF/UiO-66-NH Lu AX; McEntee M; Browe MA; Hall MG; DeCoste JB; Peterson GW ACS Appl Mater Interfaces; 2017 Apr; 9(15):13632-13636. PubMed ID: 28355051 [TBL] [Abstract][Full Text] [Related]
37. Chemical Protective Textiles of UiO-66-Integrated PVDF Composite Fibers with Rapid Heterogeneous Decontamination of Toxic Organophosphates. Dwyer DB; Dugan N; Hoffman N; Cooke DJ; Hall MG; Tovar TM; Bernier WE; DeCoste J; Pomerantz NL; Jones WE ACS Appl Mater Interfaces; 2018 Oct; 10(40):34585-34591. PubMed ID: 30207449 [TBL] [Abstract][Full Text] [Related]
38. Solid-Phase Detoxification of Chemical Warfare Agents using Zirconium-Based Metal Organic Frameworks and the Moisture Effects: Analyze via Digestion. Wang H; Mahle JJ; Tovar TM; Peterson GW; Hall MG; DeCoste JB; Buchanan JH; Karwacki CJ ACS Appl Mater Interfaces; 2019 Jun; 11(23):21109-21116. PubMed ID: 31117457 [TBL] [Abstract][Full Text] [Related]
39. Generating Catalytic Sites in UiO-66 through Defect Engineering. Feng X; Jena HS; Krishnaraj C; Leus K; Wang G; Chen H; Jia C; Van Der Voort P ACS Appl Mater Interfaces; 2021 Dec; 13(51):60715-60735. PubMed ID: 34874167 [TBL] [Abstract][Full Text] [Related]
40. Insights into Catalytic Gas-Phase Hydrolysis of Organophosphate Chemical Warfare Agents by MOF-Supported Bimetallic Metal-Oxo Clusters. Chen H; Snurr RQ ACS Appl Mater Interfaces; 2020 Apr; 12(13):14631-14640. PubMed ID: 31909586 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]