BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 34672894)

  • 1. Virtual reality hope machines in a curative imaginary: recommendations for neurorehabilitation research from a critical disability studies perspective.
    Bunch M; Johnson M; Moro SS; Adams MS; Sergio L
    Disabil Rehabil; 2022 Dec; 44(24):7655-7663. PubMed ID: 34672894
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Virtual reality in neurorehabilitation: a review of its effects on multiple cognitive domains.
    Riva G; Mancuso V; Cavedoni S; Stramba-Badiale C
    Expert Rev Med Devices; 2020 Oct; 17(10):1035-1061. PubMed ID: 32962433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexible Virtual Reality System for Neurorehabilitation and Quality of Life Improvement.
    Stanica IC; Moldoveanu F; Portelli GP; Dascalu MI; Moldoveanu A; Ristea MG
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33114272
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Virtual Reality for Neurorehabilitation: Insights From 3 European Clinics.
    O'Neil O; Fernandez MM; Herzog J; Beorchia M; Gower V; Gramatica F; Starrost K; Kiwull L
    PM R; 2018 Sep; 10(9 Suppl 2):S198-S206. PubMed ID: 30121365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Virtual reality technology as a promising direction in neurorehabilitation].
    Bofanova NS; Tychkov AY; Khanfar YA; Zolotarev RV
    Zh Nevrol Psikhiatr Im S S Korsakova; 2023; 123(1):131-136. PubMed ID: 36719129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Virtual reality gaming as a neurorehabilitation tool for brain injuries in adults: A systematic review.
    Aulisio MC; Han DY; Glueck AC
    Brain Inj; 2020 Aug; 34(10):1322-1330. PubMed ID: 32791020
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uptake of Technology for Neurorehabilitation in Clinical Practice: A Scoping Review.
    Alt Murphy M; Pradhan S; Levin MF; Hancock NJ
    Phys Ther; 2024 Feb; 104(2):. PubMed ID: 37856528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantifying patient experiences with therapeutic neurorehabilitation technologies: a scoping review.
    Nguyen CM; Uy J; Serrada I; Hordacre B
    Disabil Rehabil; 2024 May; 46(9):1662-1672. PubMed ID: 37132669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Virtual Reality and Serious Games in Neurorehabilitation of Children and Adults: Prevention, Plasticity, and Participation.
    Deutsch JE; Westcott McCoy S
    Pediatr Phys Ther; 2017 Jul; 29 Suppl 3(Suppl 3 IV STEP 2016 CONFERENCE PROCEEDINGS):S23-S36. PubMed ID: 28654475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gamified Neurorehabilitation Strategies for Post-stroke Motor Recovery: Challenges and Advantages.
    Tosto-Mancuso J; Tabacof L; Herrera JE; Breyman E; Dewil S; Cortes M; Correa-Esnard L; Kellner CP; Dangayach N; Putrino D
    Curr Neurol Neurosci Rep; 2022 Mar; 22(3):183-195. PubMed ID: 35278172
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Virtual reality in cognitive and motor rehabilitation: facts, fiction and fallacies.
    Tieri G; Morone G; Paolucci S; Iosa M
    Expert Rev Med Devices; 2018 Feb; 15(2):107-117. PubMed ID: 29313388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reshaping understandings of disability associated with age-related vision loss (ARVL): incorporating critical disability perspectives into research and practice.
    McGrath C; Rudman DL; Trentham B; Polgar J; Spafford MM
    Disabil Rehabil; 2017 Sep; 39(19):1990-1998. PubMed ID: 27558488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Serious video games and virtual reality for prevention and neurorehabilitation of cognitive decline because of aging and neurodegeneration.
    Sokolov AA; Collignon A; Bieler-Aeschlimann M
    Curr Opin Neurol; 2020 Apr; 33(2):239-248. PubMed ID: 32073439
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Virtual reality experiences, embodiment, videogames and their dimensions in neurorehabilitation.
    Perez-Marcos D
    J Neuroeng Rehabil; 2018 Nov; 15(1):113. PubMed ID: 30477527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transforming modeling in neurorehabilitation: clinical insights for personalized rehabilitation.
    Lin DJ; Backus D; Chakraborty S; Liew SL; Valero-Cuevas FJ; Patten C; Cotton RJ
    J Neuroeng Rehabil; 2024 Feb; 21(1):18. PubMed ID: 38311729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Co-design of a therapeutic virtual reality tool to increase awareness and self-management of cognitive fatigue after traumatic brain injury.
    Nunnerley J; King M; Hodge K; Hopkins P; Stockwell R; Thorne N; Snell D; Gozdzikowska K
    Disabil Rehabil Assist Technol; 2023 Nov; 18(8):1404-1410. PubMed ID: 35286813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vision-based serious games and virtual reality systems for motor rehabilitation: A review geared toward a research methodology.
    Ayed I; Ghazel A; Jaume-I-Capó A; Moyà-Alcover G; Varona J; Martínez-Bueso P
    Int J Med Inform; 2019 Nov; 131():103909. PubMed ID: 31557701
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brain-computer interfaces and virtual reality for neurorehabilitation.
    Leeb R; Pérez-Marcos D
    Handb Clin Neurol; 2020; 168():183-197. PubMed ID: 32164852
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Drawing on critical disability and universal design perspectives within occupational therapy.
    Egilson SÞ; Jónasdóttir SK
    Scand J Occup Ther; 2023 Oct; 30(7):1102-1112. PubMed ID: 37347800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Virtual reality technology in medical rehabilitation of patients with ischemic stroke].
    Kashezhev AG; Lutokhin GM; Rassulova MA; Pogonchenkova IV; Turova EA; Utegenova UV; Samokhvalov RI
    Vopr Kurortol Fizioter Lech Fiz Kult; 2022; 99(6):50-55. PubMed ID: 36538404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.