These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 34673078)

  • 1. Projection of future drought and its impact on simulated crop yield over South Asia using ensemble machine learning approach.
    Prodhan FA; Zhang J; Pangali Sharma TP; Nanzad L; Zhang D; Seka AM; Ahmed N; Hasan SS; Hoque MZ; Mohana HP
    Sci Total Environ; 2022 Feb; 807(Pt 3):151029. PubMed ID: 34673078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crop yield sensitivity of global major agricultural countries to droughts and the projected changes in the future.
    Leng G; Hall J
    Sci Total Environ; 2019 Mar; 654():811-821. PubMed ID: 30448671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Future global concurrent droughts and their effects on maize yield.
    Muthuvel D; Sivakumar B; Mahesha A
    Sci Total Environ; 2023 Jan; 855():158860. PubMed ID: 36126712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Climate change impact on major crop yield and water footprint under CMIP6 climate projections in repeated drought and flood areas in Thailand.
    Arunrat N; Sereenonchai S; Chaowiwat W; Wang C
    Sci Total Environ; 2022 Feb; 807(Pt 2):150741. PubMed ID: 34627910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The impact of high temperature and drought stress on the yield of major staple crops in northern China.
    Zhu X; Liu T; Xu K; Chen C
    J Environ Manage; 2022 Jul; 314():115092. PubMed ID: 35460982
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comprehensively quantitative method of evaluating the impact of drought on crop yield using daily multi-scale SPEI and crop growth process model.
    Wang Q; Wu J; Li X; Zhou H; Yang J; Geng G; An X; Liu L; Tang Z
    Int J Biometeorol; 2017 Apr; 61(4):685-699. PubMed ID: 27888338
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impacts of climate variability and adaptation strategies on crop yields and soil organic carbon in the US Midwest.
    Liu L; Basso B
    PLoS One; 2020; 15(1):e0225433. PubMed ID: 31990907
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complex drought patterns robustly explain global yield loss for major crops.
    Santini M; Noce S; Antonelli M; Caporaso L
    Sci Rep; 2022 Apr; 12(1):5792. PubMed ID: 35388057
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drought patterns: their spatiotemporal variability and impacts on maize production in Limpopo province, South Africa.
    Ferreira NCR; Rötter RP; Bracho-Mujica G; Nelson WCD; Lam QD; Recktenwald C; Abdulai I; Odhiambo J; Foord S
    Int J Biometeorol; 2023 Jan; 67(1):133-148. PubMed ID: 36474028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Doubling of the population exposed to drought over South Asia: CMIP6 multi-model-based analysis.
    Mondal SK; Huang J; Wang Y; Su B; Zhai J; Tao H; Wang G; Fischer T; Wen S; Jiang T
    Sci Total Environ; 2021 Jun; 771():145186. PubMed ID: 33736148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential responses of crop yields to multi-timescale drought in mainland China: Spatiotemporal patterns and climate drivers.
    Zhan C; Liang C; Zhao L; Jiang S; Zhang Y
    Sci Total Environ; 2024 Jan; 906():167559. PubMed ID: 37802342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing the impacts of agricultural drought (SPI/SPEI) on maize and wheat yields across Hungary.
    Mohammed S; Alsafadi K; Enaruvbe GO; Bashir B; Elbeltagi A; Széles A; Alsalman A; Harsanyi E
    Sci Rep; 2022 May; 12(1):8838. PubMed ID: 35614172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drought, Climate Change, and Dryland Wheat Yield Response: An Econometric Approach.
    Shayanmehr S; Rastegari Henneberry S; Sabouhi Sabouni M; Shahnoushi Foroushani N
    Int J Environ Res Public Health; 2020 Jul; 17(14):. PubMed ID: 32708323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Climate change impact on wheat and maize growth in Ethiopia: A multi-model uncertainty analysis.
    Rettie FM; Gayler S; K D Weber T; Tesfaye K; Streck T
    PLoS One; 2022; 17(1):e0262951. PubMed ID: 35061854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Projections of meteorological drought based on CMIP6 multi-model ensemble: A case study of Henan Province, China.
    Zhao X; Huang G; Li Y; Lin Q; Jin J; Lu C; Guo J
    J Contam Hydrol; 2021 Dec; 243():103887. PubMed ID: 34500145
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The coincidence of climate extremes with sensitive crop growth phases: Projected impact on sustainable crop water use and crop yield in the IGB river basins.
    Ahmad QU; Moors E; Masih I; Shaheen N; Biemans H; Adnan M
    Sci Total Environ; 2024 Mar; 916():169680. PubMed ID: 38181960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of extreme weather conditions on European crop production in 2018.
    Beillouin D; Schauberger B; Bastos A; Ciais P; Makowski D
    Philos Trans R Soc Lond B Biol Sci; 2020 Oct; 375(1810):20190510. PubMed ID: 32892735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions between temperature and drought in global and regional crop yield variability during 1961-2014.
    Matiu M; Ankerst DP; Menzel A
    PLoS One; 2017; 12(5):e0178339. PubMed ID: 28552938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of climate extreme events and their causality on maize yield in South Africa.
    Simanjuntak C; Gaiser T; Ahrends HE; Ceglar A; Singh M; Ewert F; Srivastava AK
    Sci Rep; 2023 Aug; 13(1):12462. PubMed ID: 37528122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An improved SPEI drought forecasting approach using the long short-term memory neural network.
    Dikshit A; Pradhan B; Huete A
    J Environ Manage; 2021 Apr; 283():111979. PubMed ID: 33482453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.