These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 34673398)
1. Simulating the impact of volatilization on atmospheric concentrations of pesticides with the 3D chemistry-transport model CHIMERE: Method development and application to S-metolachlor and folpet. Couvidat F; Bedos C; Gagnaire N; Carra M; Ruelle B; Martin P; Poméon T; Alletto L; Armengaud A; Quivet E J Hazard Mater; 2022 Feb; 424(Pt B):127497. PubMed ID: 34673398 [TBL] [Abstract][Full Text] [Related]
2. Assessing the ability of mechanistic volatilization models to simulate soil surface conditions: a study with the Volt'Air model. Garcia L; Bedos C; Génermont S; Braud I; Cellier P Sci Total Environ; 2011 Sep; 409(19):3980-92. PubMed ID: 21700320 [TBL] [Abstract][Full Text] [Related]
3. Observed volatilization fluxes of S-metolachlor and benoxacor applied on soil with and without crop residues. Bedos C; Alletto L; Durand B; Fanucci O; Brut A; Bourdat-Deschamps M; Giuliano S; Loubet B; Ceschia E; Benoit P Environ Sci Pollut Res Int; 2017 Feb; 24(4):3985-3996. PubMed ID: 27915427 [TBL] [Abstract][Full Text] [Related]
4. Preliminary Tests of a Laboratory Chamber Technique Intended to Simulate Pesticide Volatility in the Field. Prueger JH; Pfeiffer RL J Environ Qual; 1994 Sep; 23(5):1089-1093. PubMed ID: 34872201 [TBL] [Abstract][Full Text] [Related]
5. Environmental concentrations of irgarol, diuron and S-metolachlor induce deleterious effects on gametes and embryos of the Pacific oyster, Crassostrea gigas. Mai H; Morin B; Pardon P; Gonzalez P; Budzinski H; Cachot J Mar Environ Res; 2013 Aug; 89():1-8. PubMed ID: 23727205 [TBL] [Abstract][Full Text] [Related]
6. Solar radiation, relative humidity, and soil water effects on metolachlor volatilization. Prueger JH; Gish TJ; McConnell LL; Mckee LG; Hatfield JL; Kustas WP Environ Sci Technol; 2005 Jul; 39(14):5219-26. PubMed ID: 16082950 [TBL] [Abstract][Full Text] [Related]
7. Modelling of the long-term fate of pesticide residues in agricultural soils and their surface exchange with the atmosphere: Part II. Projected long-term fate of pesticide residues. Scholtz MT; Bidleman TF Sci Total Environ; 2007 May; 377(1):61-80. PubMed ID: 17346778 [TBL] [Abstract][Full Text] [Related]
8. Pesticide fate modelling in conservation tillage: Simulating the effect of mulch and cover crop on S-metolachlor leaching. Marín-Benito JM; Alletto L; Barriuso E; Bedos C; Benoit P; Pot V; Mamy L Sci Total Environ; 2018 Jul; 628-629():1508-1517. PubMed ID: 30045569 [TBL] [Abstract][Full Text] [Related]
9. Mulch of plant residues at the soil surface impact the leaching and persistence of pesticides: A modelling study from soil columns. Aslam S; Iqbal A; Lafolie F; Recous S; Benoit P; Garnier P J Contam Hydrol; 2018 Jul; 214():54-64. PubMed ID: 29871763 [TBL] [Abstract][Full Text] [Related]
10. Predicting and measuring environmental concentration of pesticides in air after soil application. Ferrari F; Trevisan M; Capri E J Environ Qual; 2003; 32(5):1623-33. PubMed ID: 14535302 [TBL] [Abstract][Full Text] [Related]
11. Gaseous deposition contributes to the contamination of surface waters by pesticides close to treated fields. A process-based model study. Bedos C; Loubet B; Barriuso E Environ Sci Technol; 2013 Dec; 47(24):14250-7. PubMed ID: 24206530 [TBL] [Abstract][Full Text] [Related]
12. Modeling pesticides in global surface soils: Evaluating spatiotemporal patterns for USEtox-based steady-state concentrations. Li Z; Niu S Sci Total Environ; 2021 Oct; 791():148412. PubMed ID: 34412385 [TBL] [Abstract][Full Text] [Related]
13. Implementation of the effects of physicochemical properties on the foliar penetration of pesticides and its potential for estimating pesticide volatilization from plants. Lichiheb N; Personne E; Bedos C; Van den Berg F; Barriuso E Sci Total Environ; 2016 Apr; 550():1022-1031. PubMed ID: 26855355 [TBL] [Abstract][Full Text] [Related]
14. Measuring and predicting environmental concentrations of pesticides in air after application to paddy water systems. Ferrari F; Karpouzas DG; Trevisan M; Capri E Environ Sci Technol; 2005 May; 39(9):2968-75. PubMed ID: 15926540 [TBL] [Abstract][Full Text] [Related]
15. Simulated fate and transport of metolachlor in the unsaturated zone, Maryland, USA. Bayless ER; Capel PD; Barbash JE; Webb RM; Hancock TL; Lampe DC J Environ Qual; 2008; 37(3):1064-72. PubMed ID: 18453428 [TBL] [Abstract][Full Text] [Related]
16. Meta-modeling methods for estimating ammonia volatilization from nitrogen fertilizer and manure applications. Ramanantenasoa MMJ; Génermont S; Gilliot JM; Bedos C; Makowski D J Environ Manage; 2019 Apr; 236():195-205. PubMed ID: 30731243 [TBL] [Abstract][Full Text] [Related]
17. Simulated conservative tracer as a proxy for S-metolachlor concentration predictions compared to POCIS measurements in Arcachon Bay. Fauvelle V; Belles A; Budzinski H; Mazzella N; Plus M Mar Pollut Bull; 2018 Aug; 133():423-427. PubMed ID: 30041331 [TBL] [Abstract][Full Text] [Related]
18. Modeling pesticide volatilization: testing the additional effect of gaseous adsorption on soil solid surfaces. Garcia L; Bedos C; Génermont S; Benoit P; Barriuso E; Cellier P Environ Sci Technol; 2014 May; 48(9):4991-8. PubMed ID: 24702253 [TBL] [Abstract][Full Text] [Related]
19. An analysis of the climate change effects on pesticide vapor drift from ground-based pesticide applications to cotton. Kannan N Sci Rep; 2023 Jun; 13(1):9740. PubMed ID: 37328554 [TBL] [Abstract][Full Text] [Related]
20. Experimental and modeling of the unsaturated transports of S-metolachlor and its metabolites in glaciofluvial vadose zone solids. Sidoli P; Lassabatere L; Angulo-Jaramillo R; Baran N J Contam Hydrol; 2016 Jul; 190():1-14. PubMed ID: 27131475 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]