These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
317 related articles for article (PubMed ID: 34673405)
1. Effects of compost-derived humic acid on the bio-dechlorination of pentachlorophenol in high iron content paddy soil. Xiao Y; Lu H; Tan W; Tang J; Wang Y; Shi J; Yu T; Yuan Y Ecotoxicol Environ Saf; 2021 Dec; 227():112900. PubMed ID: 34673405 [TBL] [Abstract][Full Text] [Related]
2. Polarity and Molecular Weight of Compost-Derived Humic Acids Impact Bio-dechlorination of Pentachlorophenol. Yuan Y; Xi B; He XS; Tan W; Zhang H; Li D; Yang C; Zhao X J Agric Food Chem; 2019 May; 67(17):4726-4733. PubMed ID: 30964976 [TBL] [Abstract][Full Text] [Related]
3. Effect of nitrate addition on reductive transformation of pentachlorophenol in paddy soil in relation to iron(III) reduction. Yu HY; Wang YK; Chen PC; Li FB; Chen MJ; Hu M; Ouyang X J Environ Manage; 2014 Jan; 132():42-8. PubMed ID: 24286925 [TBL] [Abstract][Full Text] [Related]
4. Successive rapid reductive dehalogenation and mineralization of pentachlorophenol by the indigenous microflora of farmyard manure compost. Jaspers CJ; Ewbank G; McCarthy AJ; Penninckx MJ J Appl Microbiol; 2002; 92(1):127-33. PubMed ID: 11849336 [TBL] [Abstract][Full Text] [Related]
5. A humic substance analogue AQDS stimulates Geobacter sp. abundance and enhances pentachlorophenol transformation in a paddy soil. Chen M; Tong H; Liu C; Chen D; Li F; Qiao J Chemosphere; 2016 Oct; 160():141-8. PubMed ID: 27372263 [TBL] [Abstract][Full Text] [Related]
6. Biowaste-source-dependent synthetic pathways of redox functional groups within humic acids favoring pentachlorophenol dechlorination in composting process. Zhao X; Tan W; Peng J; Dang Q; Zhang H; Xi B Environ Int; 2020 Feb; 135():105380. PubMed ID: 31838263 [TBL] [Abstract][Full Text] [Related]
7. The change of organic matter in sewage sludge composting and its influence on the adsorption of pentachlorophenol (PCP). Liping L; Defu L; Huanyu C; Fang C; Yunfeng H; Guangming T Environ Sci Pollut Res Int; 2015 Apr; 22(7):4977-84. PubMed ID: 25391228 [TBL] [Abstract][Full Text] [Related]
8. Heterogeneity of the electron exchange capacity of kitchen waste compost-derived humic acids based on fluorescence components. Yuan Y; Tan WB; He XS; Xi BD; Gao RT; Zhang H; Dang QL; Li D Anal Bioanal Chem; 2016 Nov; 408(27):7825-7833. PubMed ID: 27580607 [TBL] [Abstract][Full Text] [Related]
9. Microbial community response to the toxic effect of pentachlorophenol in paddy soil amended with an electron donor and shuttle. Chen M; Tong H; Qiao J; Lv Y; Jiang Q; Gao Y; Liu C Ecotoxicol Environ Saf; 2020 Dec; 205():111328. PubMed ID: 32950805 [TBL] [Abstract][Full Text] [Related]
10. Nitrate supply and sulfate-reducing suppression facilitate the removal of pentachlorophenol in a flooded mangrove soil. Cheng J; Xue L; Zhu M; Feng J; Shen-Tu J; Xu J; Brookes PC; Tang C; He Y Environ Pollut; 2019 Jan; 244():792-800. PubMed ID: 30390452 [TBL] [Abstract][Full Text] [Related]
11. Dynamics of the microbial community and Fe(III)-reducing and dechlorinating microorganisms in response to pentachlorophenol transformation in paddy soil. Chen M; Liu C; Chen P; Tong H; Li F; Qiao J; Lan Q J Hazard Mater; 2016 Jul; 312():97-105. PubMed ID: 27017395 [TBL] [Abstract][Full Text] [Related]
12. Influence of humic substances on the removal of pentachlorophenol by a biomimetic catalytic system with a water-soluble iron(III)-porphyrin complex. Fukushima M; Sawada A; Kawasaki M; Ichikawa H; Morimoto K; Tatsumi K; Aoyama M Environ Sci Technol; 2003 Mar; 37(5):1031-6. PubMed ID: 12666937 [TBL] [Abstract][Full Text] [Related]
13. The dechlorination of pentachlorophenol under a sulfate and iron reduction co-occurring anaerobic environment. Xue L; Feng X; Xu Y; Li X; Zhu M; Xu J; He Y Chemosphere; 2017 Sep; 182():166-173. PubMed ID: 28499177 [TBL] [Abstract][Full Text] [Related]
14. Polarity and molecular weight of compost-derived humic acid affect Fe(III) oxides reduction. Yuan Y; He X; Xi B; Li D; Gao R; Tan W; Zhang H; Yang C; Zhao X Chemosphere; 2018 Oct; 208():77-83. PubMed ID: 29860147 [TBL] [Abstract][Full Text] [Related]
15. The effects of different types of crop straw on the transformation of pentachlorophenol in flooded paddy soil. Lin J; Meng J; He Y; Xu J; Chen Z; Brookes PC Environ Pollut; 2018 Feb; 233():745-754. PubMed ID: 29127932 [TBL] [Abstract][Full Text] [Related]
16. Changes in the microbial community during repeated anaerobic microbial dechlorination of pentachlorophenol. Tong H; Chen M; Li F; Liu C; Liao C Biodegradation; 2017 Jun; 28(2-3):219-230. PubMed ID: 28357551 [TBL] [Abstract][Full Text] [Related]
17. Redox properties and dechlorination capacities of landfill-derived humic-like acids. Xiao X; Xi BD; He XS; Zhang H; Li YH; Pu S; Liu SJ; Yu MD; Yang C Environ Pollut; 2019 Oct; 253():488-496. PubMed ID: 31330341 [TBL] [Abstract][Full Text] [Related]
18. Bacterial networks mediate pentachlorophenol dechlorination across land-use types with citrate addition. Li H; Jiang Y; Wang S; Chen L; Wen X; Huang M; Cheng X; Cheng Z; Tao L J Hazard Mater; 2020 Feb; 384():121295. PubMed ID: 31577970 [TBL] [Abstract][Full Text] [Related]
19. Polyphasic characterization of a PCP-to-phenol dechlorinating microbial community enriched from paddy soil. Yoshida N; Yoshida Y; Handa Y; Kim HK; Ichihara S; Katayama A Sci Total Environ; 2007 Aug; 381(1-3):233-42. PubMed ID: 17477955 [TBL] [Abstract][Full Text] [Related]
20. The key microorganisms for anaerobic degradation of pentachlorophenol in paddy soil as revealed by stable isotope probing. Tong H; Liu C; Li F; Luo C; Chen M; Hu M J Hazard Mater; 2015 Nov; 298():252-60. PubMed ID: 26073380 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]