These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 34673498)

  • 1. Learning Multi-Scale Heterogeneous Representations and Global Topology for Drug-Target Interaction Prediction.
    Xuan P; Hu K; Cui H; Zhang T; Nakaguchi T
    IEEE J Biomed Health Inform; 2022 Apr; 26(4):1891-1902. PubMed ID: 34673498
    [TBL] [Abstract][Full Text] [Related]  

  • 2. multi-type neighbors enhanced global topology and pairwise attribute learning for drug-protein interaction prediction.
    Xuan P; Zhang X; Zhang Y; Hu K; Nakaguchi T; Zhang T
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35514190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ALDPI: adaptively learning importance of multi-scale topologies and multi-modality similarities for drug-protein interaction prediction.
    Hu K; Cui H; Zhang T; Sun C; Xuan P
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35108362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrating specific and common topologies of heterogeneous graphs and pairwise attributes for drug-related side effect prediction.
    Xuan P; Wang M; Liu Y; Wang D; Zhang T; Nakaguchi T
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35470853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Learning multi-scale heterogenous network topologies and various pairwise attributes for drug-disease association prediction.
    Zhang H; Cui H; Zhang T; Cao Y; Xuan P
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35136910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Attentional multi-level representation encoding based on convolutional and variance autoencoders for lncRNA-disease association prediction.
    Sheng N; Cui H; Zhang T; Xuan P
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32444875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heterogeneous multi-scale neighbor topologies enhanced drug-disease association prediction.
    Xuan P; Meng X; Gao L; Zhang T; Nakaguchi T
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35393616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GVDTI: graph convolutional and variational autoencoders with attribute-level attention for drug-protein interaction prediction.
    Xuan P; Fan M; Cui H; Zhang T; Nakaguchi T
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34718408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integration of Neighbor Topologies Based on Meta-Paths and Node Attributes for Predicting Drug-Related Diseases.
    Xuan P; Lu Z; Zhang T; Liu Y; Nakaguchi T
    Int J Mol Sci; 2022 Mar; 23(7):. PubMed ID: 35409235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graph-DTI: A New Model for Drug-target Interaction Prediction Based on Heterogenous Network Graph Embedding.
    Qu X; Du G; Hu J; Cai Y
    Curr Comput Aided Drug Des; 2024; 20(6):1013-1024. PubMed ID: 37448360
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Learning Multi-Types of Neighbor Node Attributes and Semantics by Heterogeneous Graph Transformer and Multi-View Attention for Drug-Related Side-Effect Prediction.
    Xuan P; Li P; Cui H; Wang M; Nakaguchi T; Zhang T
    Molecules; 2023 Sep; 28(18):. PubMed ID: 37764319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of Drug-Related Diseases Through Integrating Pairwise Attributes and Neighbor Topological Structures.
    Song Y; Cui H; Zhang T; Yang T; Li X; Xuan P
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(5):2963-2974. PubMed ID: 34133286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Graph based multi-scale neighboring topology deep learning for kidney and tumor segmentation.
    Xuan P; Bi H; Cui H; Jin Q; Zhang T; Tu H; Cheng P; Li C; Ning Z; Guo M; Duh HBL
    Phys Med Biol; 2022 Nov; 67(22):. PubMed ID: 36401576
    [No Abstract]   [Full Text] [Related]  

  • 14. Specific topology and topological connection sensitivity enhanced graph learning for lncRNA-disease association prediction.
    Xuan P; Bai H; Cui H; Zhang X; Nakaguchi T; Zhang T
    Comput Biol Med; 2023 Sep; 164():107265. PubMed ID: 37531860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-scale topology and position feature learning and relationship-aware graph reasoning for prediction of drug-related microbes.
    Xuan P; Gu J; Cui H; Wang S; Toshiya N; Liu C; Zhang T
    Bioinformatics; 2024 Feb; 40(2):. PubMed ID: 38269610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Learning global dependencies and multi-semantics within heterogeneous graph for predicting disease-related lncRNAs.
    Xuan P; Wang S; Cui H; Zhao Y; Zhang T; Wu P
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36088549
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrating multi-scale neighbouring topologies and cross-modal similarities for drug-protein interaction prediction.
    Xuan P; Zhang Y; Cui H; Zhang T; Guo M; Nakaguchi T
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33839743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of drug-disease associations by integrating common topologies of heterogeneous networks and specific topologies of subnets.
    Gao L; Cui H; Zhang T; Sheng N; Xuan P
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34850815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graph Convolutional Autoencoder and Fully-Connected Autoencoder with Attention Mechanism Based Method for Predicting Drug-Disease Associations.
    Xuan P; Gao L; Sheng N; Zhang T; Nakaguchi T
    IEEE J Biomed Health Inform; 2021 May; 25(5):1793-1804. PubMed ID: 33216722
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inferring Drug-Target Interactions Based on Random Walk and Convolutional Neural Network.
    Xu X; Xuan P; Zhang T; Chen B; Sheng N
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(4):2294-2304. PubMed ID: 33729947
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.