BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 34673780)

  • 1. Restarted replication forks are error-prone and cause CAG repeat expansions and contractions.
    Gold MA; Whalen JM; Freon K; Hong Z; Iraqui I; Lambert SAE; Freudenreich CH
    PLoS Genet; 2021 Oct; 17(10):e1009863. PubMed ID: 34673780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Replication stalling and heteroduplex formation within CAG/CTG trinucleotide repeats by mismatch repair.
    Viterbo D; Michoud G; Mosbach V; Dujon B; Richard GF
    DNA Repair (Amst); 2016 Jun; 42():94-106. PubMed ID: 27045900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Absence of MutSβ leads to the formation of slipped-DNA for CTG/CAG contractions at primate replication forks.
    Slean MM; Panigrahi GB; Castel AL; Pearson AB; Tomkinson AE; Pearson CE
    DNA Repair (Amst); 2016 Jun; 42():107-18. PubMed ID: 27155933
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Replication restart: a pathway for (CTG).(CAG) repeat deletion in Escherichia coli.
    Kim SH; Pytlos MJ; Sinden RR
    Mutat Res; 2006 Mar; 595(1-2):5-22. PubMed ID: 16472829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oligodeoxynucleotide binding to (CTG) · (CAG) microsatellite repeats inhibits replication fork stalling, hairpin formation, and genome instability.
    Liu G; Chen X; Leffak M
    Mol Cell Biol; 2013 Feb; 33(3):571-81. PubMed ID: 23166299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recovery of arrested replication forks by homologous recombination is error-prone.
    Iraqui I; Chekkal Y; Jmari N; Pietrobon V; Fréon K; Costes A; Lambert SA
    PLoS Genet; 2012; 8(10):e1002976. PubMed ID: 23093942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Maternal germline-specific effect of DNA ligase I on CTG/CAG instability.
    Tomé S; Panigrahi GB; López Castel A; Foiry L; Melton DW; Gourdon G; Pearson CE
    Hum Mol Genet; 2011 Jun; 20(11):2131-43. PubMed ID: 21378394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contracting CAG/CTG repeats using the CRISPR-Cas9 nickase.
    Cinesi C; Aeschbach L; Yang B; Dion V
    Nat Commun; 2016 Nov; 7():13272. PubMed ID: 27827362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of recombination and replication fork restart in repeat instability.
    Polleys EJ; House NCM; Freudenreich CH
    DNA Repair (Amst); 2017 Aug; 56():156-165. PubMed ID: 28641941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trinucleotide repeat instability: a hairpin curve at the crossroads of replication, recombination, and repair.
    Lenzmeier BA; Freudenreich CH
    Cytogenet Genome Res; 2003; 100(1-4):7-24. PubMed ID: 14526162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA tandem repeat instability in the Escherichia coli chromosome is stimulated by mismatch repair at an adjacent CAG·CTG trinucleotide repeat.
    Blackwood JK; Okely EA; Zahra R; Eykelenboom JK; Leach DR
    Proc Natl Acad Sci U S A; 2010 Dec; 107(52):22582-6. PubMed ID: 21149728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cytosine deamination and base excision repair cause R-loop-induced CAG repeat fragility and instability in
    Su XA; Freudenreich CH
    Proc Natl Acad Sci U S A; 2017 Oct; 114(40):E8392-E8401. PubMed ID: 28923949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of recombination at yeast nuclear pores controls repair and triplet repeat stability.
    Su XA; Dion V; Gasser SM; Freudenreich CH
    Genes Dev; 2015 May; 29(10):1006-17. PubMed ID: 25940904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Repeat instability as the basis for human diseases and as a potential target for therapy.
    López Castel A; Cleary JD; Pearson CE
    Nat Rev Mol Cell Biol; 2010 Mar; 11(3):165-70. PubMed ID: 20177394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recombination-restarted replication makes inverted chromosome fusions at inverted repeats.
    Mizuno K; Miyabe I; Schalbetter SA; Carr AM; Murray JM
    Nature; 2013 Jan; 493(7431):246-9. PubMed ID: 23178809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure-forming CAG/CTG repeat sequences are sensitive to breakage in the absence of Mrc1 checkpoint function and S-phase checkpoint signaling: implications for trinucleotide repeat expansion diseases.
    Freudenreich CH; Lahiri M
    Cell Cycle; 2004 Nov; 3(11):1370-4. PubMed ID: 15483399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large-scale expansions of Friedreich's ataxia GAA repeats in yeast.
    Shishkin AA; Voineagu I; Matera R; Cherng N; Chernet BT; Krasilnikova MM; Narayanan V; Lobachev KS; Mirkin SM
    Mol Cell; 2009 Jul; 35(1):82-92. PubMed ID: 19595718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Location, Location, Location: The Role of Nuclear Positioning in the Repair of Collapsed Forks and Protection of Genome Stability.
    Whalen JM; Freudenreich CH
    Genes (Basel); 2020 Jun; 11(6):. PubMed ID: 32526925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. E. coli mismatch repair acts downstream of replication fork stalling to stabilize the expanded (GAA.TTC)(n) sequence.
    Bourn RL; Rindler PM; Pollard LM; Bidichandani SI
    Mutat Res; 2009 Feb; 661(1-2):71-7. PubMed ID: 19046977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expansion of CAG repeats in Escherichia coli is controlled by single-strand DNA exonucleases of both polarities.
    Jackson A; Okely EA; Leach DR
    Genetics; 2014 Oct; 198(2):509-17. PubMed ID: 25081568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.