These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 34675077)

  • 21. Transcription and translation contribute to gene locus relocation to the nucleoid periphery in E. coli.
    Yang S; Kim S; Kim DK; Jeon An H; Bae Son J; Hedén Gynnå A; Ki Lee N
    Nat Commun; 2019 Nov; 10(1):5131. PubMed ID: 31719538
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biophysical Properties of Escherichia coli Cytoplasm in Stationary Phase by Superresolution Fluorescence Microscopy.
    Zhu Y; Mustafi M; Weisshaar JC
    mBio; 2020 Jun; 11(3):. PubMed ID: 32546611
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The role of co-transcriptional translation and protein translocation (transertion) in bacterial chromosome segregation.
    Woldringh CL
    Mol Microbiol; 2002 Jul; 45(1):17-29. PubMed ID: 12100545
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nucleoid and cytoplasmic localization of small RNAs in Escherichia coli.
    Sheng H; Stauffer WT; Hussein R; Lin C; Lim HN
    Nucleic Acids Res; 2017 Mar; 45(5):2919-2934. PubMed ID: 28119418
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Competing ParA structures space bacterial plasmids equally over the nucleoid.
    Ietswaart R; Szardenings F; Gerdes K; Howard M
    PLoS Comput Biol; 2014 Dec; 10(12):e1004009. PubMed ID: 25521716
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Active transcription of rRNA operons condenses the nucleoid in Escherichia coli: examining the effect of transcription on nucleoid structure in the absence of transertion.
    Cabrera JE; Cagliero C; Quan S; Squires CL; Jin DJ
    J Bacteriol; 2009 Jul; 191(13):4180-5. PubMed ID: 19395497
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Entropy-based mechanism of ribosome-nucleoid segregation in E. coli cells.
    Mondal J; Bratton BP; Li Y; Yethiraj A; Weisshaar JC
    Biophys J; 2011 Jun; 100(11):2605-13. PubMed ID: 21641305
    [TBL] [Abstract][Full Text] [Related]  

  • 28. H-NS, IHF, and DnaA lead to changes in nucleoid organizations, replication initiation, and cell division.
    Huang T; Yuan H; Fan L; Moregen M
    J Basic Microbiol; 2020 Feb; 60(2):136-148. PubMed ID: 32011760
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Time-dependent effects of transcription- and translation-halting drugs on the spatial distributions of the Escherichia coli chromosome and ribosomes.
    Bakshi S; Choi H; Mondal J; Weisshaar JC
    Mol Microbiol; 2014 Nov; 94(4):871-87. PubMed ID: 25250841
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The bacterial nucleoid: nature, dynamics and sister segregation.
    Kleckner N; Fisher JK; Stouf M; White MA; Bates D; Witz G
    Curr Opin Microbiol; 2014 Dec; 22():127-37. PubMed ID: 25460806
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Architecture of the Escherichia coli nucleoid.
    Verma SC; Qian Z; Adhya SL
    PLoS Genet; 2019 Dec; 15(12):e1008456. PubMed ID: 31830036
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Osmotic compaction of supercoiled DNA into a bacterial nucleoid.
    Odijk T
    Biophys Chem; 1998 Jul; 73(1-2):23-9. PubMed ID: 9697298
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Translation initiation and the fate of bacterial mRNAs.
    Kaberdin VR; Bläsi U
    FEMS Microbiol Rev; 2006 Nov; 30(6):967-79. PubMed ID: 16989654
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural and physical aspects of bacterial chromosome segregation.
    Woldringh CL; Nanninga N
    J Struct Biol; 2006 Nov; 156(2):273-83. PubMed ID: 16828313
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spatial organization and dynamics of RNase E and ribosomes in
    Bayas CA; Wang J; Lee MK; Schrader JM; Shapiro L; Moerner WE
    Proc Natl Acad Sci U S A; 2018 Apr; 115(16):E3712-E3721. PubMed ID: 29610352
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Growth Phase-Dependent Chromosome Condensation and Heat-Stable Nucleoid-Structuring Protein Redistribution in Escherichia coli under Osmotic Stress.
    Rafiei N; Cordova M; Navarre WW; Milstein JN
    J Bacteriol; 2019 Dec; 201(23):. PubMed ID: 31481544
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Origin of Chromosomal Replication Is Asymmetrically Positioned on the Mycobacterial Nucleoid, and the Timing of Its Firing Depends on HupB.
    Hołówka J; Trojanowski D; Janczak M; Jakimowicz D; Zakrzewska-Czerwińska J
    J Bacteriol; 2018 May; 200(10):. PubMed ID: 29531181
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The role of MatP, ZapA and ZapB in chromosomal organization and dynamics in Escherichia coli.
    Männik J; Castillo DE; Yang D; Siopsis G; Männik J
    Nucleic Acids Res; 2016 Feb; 44(3):1216-26. PubMed ID: 26762981
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nucleoid Size Scaling and Intracellular Organization of Translation across Bacteria.
    Gray WT; Govers SK; Xiang Y; Parry BR; Campos M; Kim S; Jacobs-Wagner C
    Cell; 2019 May; 177(6):1632-1648.e20. PubMed ID: 31150626
    [TBL] [Abstract][Full Text] [Related]  

  • 40. RNase III is required for localization to the nucleoid of the 5' pre-rRNA leader and for optimal induction of rRNA synthesis in E. coli.
    Malagon F
    RNA; 2013 Sep; 19(9):1200-7. PubMed ID: 23893733
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.