These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 34675077)

  • 41. Novel aspects of the structure of the Escherichia coli nucleoid investigated by a rapid sedimentation assay.
    Lee JS; Morgan AR
    Can J Biochem; 1982; 60(10):952-61. PubMed ID: 6184141
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effects of perturbing nucleoid structure on nucleoid occlusion-mediated toporegulation of FtsZ ring assembly.
    Sun Q; Margolin W
    J Bacteriol; 2004 Jun; 186(12):3951-9. PubMed ID: 15175309
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Organization of ribosomes and nucleoids in Escherichia coli cells during growth and in quiescence.
    Chai Q; Singh B; Peisker K; Metzendorf N; Ge X; Dasgupta S; Sanyal S
    J Biol Chem; 2014 Apr; 289(16):11342-11352. PubMed ID: 24599955
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Functional mapping of the E. coli translational machinery using single-molecule tracking.
    Mohapatra S; Weisshaar JC
    Mol Microbiol; 2018 Oct; 110(2):262-282. PubMed ID: 30107639
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Coordination of genomic structure and transcription by the main bacterial nucleoid-associated protein HU.
    Berger M; Farcas A; Geertz M; Zhelyazkova P; Brix K; Travers A; Muskhelishvili G
    EMBO Rep; 2010 Jan; 11(1):59-64. PubMed ID: 20010798
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Catastrophic chromosome fragmentation probes the nucleoid structure and dynamics in Escherichia coli.
    Mahaseth T; Kuzminov A
    Nucleic Acids Res; 2022 Oct; 50(19):11013-11027. PubMed ID: 36243965
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bacterial Nucleoid Occlusion: Multiple Mechanisms for Preventing Chromosome Bisection During Cell Division.
    Schumacher MA
    Subcell Biochem; 2017; 84():267-298. PubMed ID: 28500529
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Molecular mechanisms involved in bacterial chromatin organization].
    Kołodziej M; Zakrzewska-Czerwińska J; Hołówka J
    Postepy Biochem; 2019 Oct; 65(3):202-211. PubMed ID: 31643167
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cooperation between translating ribosomes and RNA polymerase in transcription elongation.
    Proshkin S; Rahmouni AR; Mironov A; Nudler E
    Science; 2010 Apr; 328(5977):504-8. PubMed ID: 20413502
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Coupling the distribution of RNA polymerase to global gene regulation and the dynamic structure of the bacterial nucleoid in Escherichia coli.
    Jin DJ; Cabrera JE
    J Struct Biol; 2006 Nov; 156(2):284-91. PubMed ID: 16934488
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A consonant model of the tRNA-ribosome complex during the elongation cycle of translation.
    Wower J; Zimmermann RA
    Biochimie; 1991; 73(7-8):961-9. PubMed ID: 1720672
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Growth phase dependent changes in the structure and protein composition of nucleoid in Escherichia coli.
    Talukder A; Ishihama A
    Sci China Life Sci; 2015 Sep; 58(9):902-11. PubMed ID: 26208826
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Subcellular Architecture of the
    Kim J; Goñi-Moreno A; de Lorenzo V
    mBio; 2021 Feb; 12(1):. PubMed ID: 33622725
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Intracellular Positioning Systems Limit the Entropic Eviction of Secondary Replicons Toward the Nucleoid Edges in Bacterial Cells.
    Planchenault C; Pons MC; Schiavon C; Siguier P; Rech J; Guynet C; Dauverd-Girault J; Cury J; Rocha EPC; Junier I; Cornet F; Espéli O
    J Mol Biol; 2020 Feb; 432(3):745-761. PubMed ID: 31931015
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Dynamic organization: chromosome domains in Escherichia coli.
    Messerschmidt SJ; Waldminghaus T
    J Mol Microbiol Biotechnol; 2014; 24(5-6):301-15. PubMed ID: 25732334
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Macromolecular crowding can account for RNase-sensitive constraint of bacterial nucleoid structure.
    Foley PL; Wilson DB; Shuler ML
    Biochem Biophys Res Commun; 2010 Apr; 395(1):42-7. PubMed ID: 20346349
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Bacterial partition complexes segregate within the volume of the nucleoid.
    Le Gall A; Cattoni DI; Guilhas B; Mathieu-Demazière C; Oudjedi L; Fiche JB; Rech J; Abrahamsson S; Murray H; Bouet JY; Nollmann M
    Nat Commun; 2016 Jul; 7():12107. PubMed ID: 27377966
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cell size and nucleoid organization of engineered Escherichia coli cells with a reduced genome.
    Hashimoto M; Ichimura T; Mizoguchi H; Tanaka K; Fujimitsu K; Keyamura K; Ote T; Yamakawa T; Yamazaki Y; Mori H; Katayama T; Kato J
    Mol Microbiol; 2005 Jan; 55(1):137-49. PubMed ID: 15612923
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Initiation of transcription and translation in E. coli nucleoids].
    Simon MC; Nisman B
    C R Acad Hebd Seances Acad Sci D; 1977 Sep; 285(4):435-8. PubMed ID: 410521
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Temperature-dependent translation of leaderless and canonical mRNAs in Escherichia coli.
    Grill S; Moll I; Giuliodori AM; Gualerzi CO; Bläsi U
    FEMS Microbiol Lett; 2002 Jun; 211(2):161-7. PubMed ID: 12076807
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.