These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 34675306)

  • 1. Inspecting the electronic structure and thermoelectric power factor of novel p-type half-Heuslers.
    Khandy SA
    Sci Rep; 2021 Oct; 11(1):20756. PubMed ID: 34675306
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electronic Structure-, Phonon Spectrum-, and Effective Mass- Related Thermoelectric Properties of PdXSn (X = Zr, Hf) Half Heuslers.
    Rani B; Wani AF; Sharopov UB; Patra L; Singh J; Ali AM; Abd El-Rehim AF; Khandy SA; Dhiman S; Kaur K
    Molecules; 2022 Oct; 27(19):. PubMed ID: 36235103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of the electronic structure, mechanical, and thermoelectric properties of novel semiconductor compounds: XYTe (X = Ti/Sc; Y = Fe/Co).
    Ahmad A; Liu CJ
    Phys Chem Chem Phys; 2023 Jun; 25(24):16587-16596. PubMed ID: 37310202
    [TBL] [Abstract][Full Text] [Related]  

  • 4. n-Type TaCoSn-Based Half-Heuslers as Promising Thermoelectric Materials.
    Li S; Zhu H; Mao J; Feng Z; Li X; Chen C; Cao F; Liu X; Singh DJ; Ren Z; Zhang Q
    ACS Appl Mater Interfaces; 2019 Nov; 11(44):41321-41329. PubMed ID: 31609575
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comprehensive investigation of electronic structure, phonon spectrum and thermoelectric performance of LuMSb (M = Ni, Pd, Pt) half Heusler compounds from first principles.
    Satyam JK; Saini SM
    J Comput Chem; 2024 Jan; 45(1):25-34. PubMed ID: 37638645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure, stability, and transport properties of Li
    Mahmoudi S; Golzan MM; Nemati-Kande E
    Sci Rep; 2024 May; 14(1):12201. PubMed ID: 38806656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational Search for Better Thermoelectric Performance in Nickel-Based Half-Heusler Compounds.
    Chen X; Zhang X; Gao J; Li Q; Shao Z; Lin H; Pan M
    ACS Omega; 2021 Jul; 6(28):18269-18280. PubMed ID: 34308058
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rhodium-based half-Heusler alloys as thermoelectric materials.
    Jaishi DR; Bati S; Sharma N; Karki B; Belbase BP; Ghimire MP
    Phys Chem Chem Phys; 2022 Aug; 24(33):19844-19852. PubMed ID: 35960151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High thermoelectric performance of half-Heusler Zr
    Jiang Q; Wan R; Zhang Z; Lei Y; Tian G
    J Phys Condens Matter; 2021 Sep; 33(46):. PubMed ID: 34404030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermodynamic and thermoelectric properties of CoFeYGe (Y  =  Ti, Cr) quaternary Heusler alloys: first principle calculations.
    Haleoot R; Hamad B
    J Phys Condens Matter; 2020 Feb; 32(7):075402. PubMed ID: 31671416
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intensified Phonon Scattering in ZrCoBi Half-Heusler by Noble Metals Doping.
    Bao X; Liu K; Ma X; Li X; Yao H; Ye S; Cao F; Mao J; Zhang Q
    ACS Appl Mater Interfaces; 2024 Jan; 16(3):3502-3508. PubMed ID: 38192195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strong electron-phonon coupling and high lattice thermal conductivity in half-Heusler thermoelectric materials.
    Wang R; Cai J; Zhang Q; Tan X; Wu J; Liu G; Jiang J
    Phys Chem Chem Phys; 2024 Mar; 26(11):8932-8937. PubMed ID: 38433622
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comprehensive DFT investigation of transition-metal-based new quaternary Heusler alloys CoNbMnZ (Z = Ge, Sn): compatible for spin-dependent and thermoelectric applications.
    Seh AQ; Gupta DC
    RSC Adv; 2020 Nov; 10(71):43870-43881. PubMed ID: 35519700
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low Lattice Thermal Conductivity in a Wider Temperature Range for Biphasic-Quaternary (Ti,V)CoSb Half-Heusler Alloys.
    Chauhan NS; Bhattacharjee D; Maiti T; Kolen'ko YV; Miyazaki Y; Bhattacharya A
    ACS Appl Mater Interfaces; 2022 Dec; 14(49):54736-54747. PubMed ID: 36450123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of Nb vacancies and p-type doping of the NbCoSn-NbCoSb half-Heusler thermoelectrics.
    Ferluccio DA; Smith RI; Buckman J; Bos JG
    Phys Chem Chem Phys; 2018 Feb; 20(6):3979-3987. PubMed ID: 29349442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Realization of Band Convergence in p-Type TiCoSb Half-Heusler Alloys Significantly Enhances the Thermoelectric Performance.
    Verma AK; Johari KK; Dubey P; Sharma DK; Kumar S; Dhakate SR; Candolfi C; Lenoir B; Gahtori B
    ACS Appl Mater Interfaces; 2023 Jan; 15(1):942-952. PubMed ID: 36542089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. First-Principles Investigations of Thermoelectric Behavior of RuCrX (X = Si, Ge, Sn).
    Asif M; Alrashdi AO; Fadhali MM; Afaq A; Bakar A
    ACS Omega; 2022 Dec; 7(49):45353-45360. PubMed ID: 36530261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Thermoelectric Properties of Monolayer MAs
    Wei QL; Yang HY; Wu YY; Liu YB; Li YH
    Nanomaterials (Basel); 2020 Oct; 10(10):. PubMed ID: 33081158
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transport properties of RuV-based half-Heusler semiconductors for thermoelectric applications: a computational study.
    Enamullah ; Sharma SK; Ahmed SS
    J Phys Condens Matter; 2020 May; 32(40):405501. PubMed ID: 32460251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials.
    Fu C; Bai S; Liu Y; Tang Y; Chen L; Zhao X; Zhu T
    Nat Commun; 2015 Sep; 6():8144. PubMed ID: 26330371
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.