These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 34675374)

  • 1. Deterministic inverse design of Tamm plasmon thermal emitters with multi-resonant control.
    He M; Nolen JR; Nordlander J; Cleri A; McIlwaine NS; Tang Y; Lu G; Folland TG; Landman BA; Maria JP; Caldwell JD
    Nat Mater; 2021 Dec; 20(12):1663-1669. PubMed ID: 34675374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coupled Tamm Phonon and Plasmon Polaritons for Designer Planar Multiresonance Absorbers.
    He M; Nolen JR; Nordlander J; Cleri A; Lu G; Arnaud T; McIlwaine NS; Diaz-Granados K; Janzen E; Folland TG; Edgar JH; Maria JP; Caldwell JD
    Adv Mater; 2023 May; 35(20):e2209909. PubMed ID: 36843308
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tamm plasmon selective thermal emitters.
    Yang ZY; Ishii S; Yokoyama T; Dao TD; Sun MG; Nagao T; Chen KP
    Opt Lett; 2016 Oct; 41(19):4453-4456. PubMed ID: 27749853
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective Properties of Mid-Infrared Tamm Phonon-Polaritons Emitter with Silicon Carbide-Based Structures.
    Gong C; Zheng G
    Micromachines (Basel); 2022 Jun; 13(6):. PubMed ID: 35744534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Near-field manipulation of Tamm plasmon polaritons.
    Li N; Zou Q; Zhao B; Min C; Yuan X; Somekh M; Feng F
    Opt Express; 2023 Feb; 31(5):7321-7335. PubMed ID: 36859866
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tunable Narrowband Silicon-Based Thermal Emitter with Excellent High-Temperature Stability Fabricated by Lithography-Free Methods.
    Hou G; Wang Q; Zhu Y; Lu Z; Xu J; Chen K
    Nanomaterials (Basel); 2021 Jul; 11(7):. PubMed ID: 34361200
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring the potential of broadband Tamm plasmon resonance for enhanced photodetection.
    Poddar K; Sinha R; Jana B; Chatterjee S; Mukherjee R; Maity AR; Kumar S; Maji PS
    Appl Opt; 2023 Oct; 62(30):8190-8196. PubMed ID: 38038117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chiral-Selective Tamm Plasmon Polaritons.
    Lin MY; Xu WH; Bikbaev RG; Yang JH; Li CR; Timofeev IV; Lee W; Chen KP
    Materials (Basel); 2021 May; 14(11):. PubMed ID: 34073879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly Selective CMOS-Compatible Mid-Infrared Thermal Emitter/Detector Slab Design Using Optical Tamm-States.
    Pühringer G; Jakoby B
    Materials (Basel); 2019 Mar; 12(6):. PubMed ID: 30897809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wavelength- and Angle-Selective Photodetectors Enabled by Graphene Hot Electrons with Tamm Plasmon Polaritons.
    Huang CH; Wu CH; Bikbaev RG; Ye MJ; Chen CW; Wang TJ; Timofeev IV; Lee W; Chen KP
    Nanomaterials (Basel); 2023 Feb; 13(4):. PubMed ID: 36839064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tamm-plasmon and surface-plasmon hybrid-mode based refractometry in photonic bandgap structures.
    Das R; Srivastava T; Jha R
    Opt Lett; 2014 Feb; 39(4):896-9. PubMed ID: 24562235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Terahertz refractive index sensor based on Tamm plasmon-polaritons with graphene.
    Mehdi Keshavarz M; Alighanbari A
    Appl Opt; 2019 May; 58(13):3604-3612. PubMed ID: 31044859
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tuning of the polariton modes induced by longitudinal strong coupling in the graphene hybridized DBR cavity.
    Zhang K; Liu Y; Xia F; Li S; Kong W
    Opt Lett; 2020 Jul; 45(13):3669-3672. PubMed ID: 32630926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of Rugate Filters on the Spectral Manifestation of Tamm Plasmon Polaritons.
    Reshetnyak VY; Pinkevych IP; Bunning TJ; Evans DR
    Materials (Basel); 2021 Mar; 14(5):. PubMed ID: 33800265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tunable dual-band mid-infrared absorber based on the coupling of a graphene surface plasmon polariton and Tamm phonon-polariton.
    Han J; Shao Y; Chen C; Wang J; Gao Y; Gao Y
    Opt Express; 2021 May; 29(10):15228-15238. PubMed ID: 33985226
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Suppressing the radiation loss by hybrid Tamm-surface plasmon BIC modes.
    Qiao T; Hu M; Wang Q; Xiao M; Zhu S; Liu H
    Opt Express; 2024 Jun; 32(12):21497-21505. PubMed ID: 38859502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-performance narrowband thermal emitter based on aperiodic Tamm plasmon structures assisted by inverse design.
    Qiu Q; Zhou D; Zhang J; Tan C; Xu Q; Zhang Z; Wen Z; Sun Y; Dai N; Hao J
    Opt Lett; 2023 Nov; 48(22):6000-6003. PubMed ID: 37966773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tunable narrowband mid-infrared thermal emitter with a bilayer cavity enhanced Tamm plasmon.
    Zhu H; Luo H; Li Q; Zhao D; Cai L; Du K; Xu Z; Ghosh P; Qiu M
    Opt Lett; 2018 Nov; 43(21):5230-5233. PubMed ID: 30382974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A dual-band hydrogen sensor based on Tamm plasmon polaritons.
    Zhang K; Chen Z; Li H; Yi Z; Liu Y; Wu X
    Phys Chem Chem Phys; 2023 Aug; 25(30):20697-20705. PubMed ID: 37489034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Slow-light effects based on the tunable Fano resonance in a Tamm state coupled graphene surface plasmon system.
    Ruan B; Li M; Liu C; Gao E; Zhang Z; Chang X; Zhang B; Li H
    Phys Chem Chem Phys; 2023 Jan; 25(3):1685-1689. PubMed ID: 36541662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.