These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 34675374)

  • 21. Selective multi-wavelength infrared emission by stacked gap-plasmon thermal emitters.
    Hsiao HH; Xu BT
    Nanotechnology; 2021 Apr; 32(16):165201. PubMed ID: 33440355
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tamm plasmons in metal/nanoporous GaN distributed Bragg reflector cavities for active and passive optoelectronics.
    Lheureux G; Monavarian M; Anderson R; Decrescent RA; Bellessa J; Symonds C; Schuller JA; Speck JS; Nakamura S; DenBaars SP
    Opt Express; 2020 Jun; 28(12):17934-17943. PubMed ID: 32679995
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Wide-angle high-efficiency absorption of graphene empowered by an angle-insensitive Tamm plasmon polariton.
    Wu F; Xiao S
    Opt Express; 2023 Feb; 31(4):5722-5735. PubMed ID: 36823845
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Wide-angle Spectrally Selective Perfect Absorber by Utilizing Dispersionless Tamm Plasmon Polaritons.
    Xue CH; Wu F; Jiang HT; Li Y; Zhang YW; Chen H
    Sci Rep; 2016 Dec; 6():39418. PubMed ID: 27991565
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Application of Tamm Plasmon Polaritons and Cavity Modes for Biosensing in the Combined Spectroscopic Ellipsometry and Quartz Crystal Microbalance Method.
    Plikusienė I; Bužavaitė-Vertelienė E; Mačiulis V; Valavičius A; Ramanavičienė A; Balevičius Z
    Biosensors (Basel); 2021 Dec; 11(12):. PubMed ID: 34940258
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tunable plasmonic resonator using conductivity modulated Bragg reflectors.
    Pathiranage S; Gunapala SD; Premaratne M
    J Phys Condens Matter; 2021 May; 33(24):. PubMed ID: 33631723
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Double-Resolved Beam Steering by Metagrating-Based Tamm Plasmon Polariton.
    Bikbaev RG; Maksimov DN; Chen KP; Timofeev IV
    Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079396
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparing resonant photon tunneling via cavity modes and Tamm plasmon polariton modes in metal-coated Bragg mirrors.
    Leosson K; Shayestehaminzadeh S; Tryggvason TK; Kossoy A; Agnarsson B; Magnus F; Olafsson S; Gudmundsson JT; Magnusson EB; Shelykh IA
    Opt Lett; 2012 Oct; 37(19):4026-8. PubMed ID: 23027267
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hot-electron photodetector with wavelength selectivity in near-infrared via Tamm plasmon.
    Wang Z; Clark JK; Ho YL; Delaunay JJ
    Nanoscale; 2019 Sep; 11(37):17407-17414. PubMed ID: 31528935
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tunable high-efficiency light absorption of monolayer graphene via Tamm plasmon polaritons.
    Lu H; Gan X; Jia B; Mao D; Zhao J
    Opt Lett; 2016 Oct; 41(20):4743-4746. PubMed ID: 28005882
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Selective Emitter with Engineered Anisotropic Radiation to Minimize Dual-Band Thermal Signature for Infrared Stealth Technology.
    Park C; Kim J; Hahn JW
    ACS Appl Mater Interfaces; 2020 Sep; 12(38):43090-43097. PubMed ID: 32862637
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An Optical Fiber Refractive Index Sensor Based on the Hybrid Mode of Tamm and Surface Plasmon Polaritons.
    Zhang X; Zhu XS; Shi YW
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 29970804
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gires-Tournois resonators as ultra-narrowband perfect absorbers for infrared spectroscopic devices.
    Doan AT; Dao TD; Ishii S; Nagao T
    Opt Express; 2019 Jun; 27(12):A725-A737. PubMed ID: 31252849
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tamm plasmon-polariton with negative group velocity induced by a negative index meta-material capping layer at metal-Bragg reflector interface.
    Liu C; Kong M; Li B
    Opt Express; 2014 May; 22(9):11376-83. PubMed ID: 24921834
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evidence for confined tamm plasmon modes under metallic microdisks and application to the control of spontaneous optical emission.
    Gazzano O; Michaelis de Vasconcellos S; Gauthron K; Symonds C; Bloch J; Voisin P; Bellessa J; Lemaître A; Senellart P
    Phys Rev Lett; 2011 Dec; 107(24):247402. PubMed ID: 22243024
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High quality factor confined Tamm modes.
    Symonds C; Azzini S; Lheureux G; Piednoir A; Benoit JM; Lemaitre A; Senellart P; Bellessa J
    Sci Rep; 2017 Jun; 7(1):3859. PubMed ID: 28634327
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spectral engineering by flexible tunings of optical Tamm states and Fabry-Perot cavity resonance.
    Zhang XL; Song JF; Feng J; Sun HB
    Opt Lett; 2013 Nov; 38(21):4382-5. PubMed ID: 24177099
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fano resonances in integrated silicon Bragg reflectors for sensing applications.
    Chang CM; Solgaard O
    Opt Express; 2013 Nov; 21(22):27209-18. PubMed ID: 24216944
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transmission resonances through aperiodic arrays of subwavelength apertures.
    Matsui T; Agrawal A; Nahata A; Vardeny ZV
    Nature; 2007 Mar; 446(7135):517-21. PubMed ID: 17392781
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Coupling of Fluorophores in Single Nanoapertures to Tamm Plasmon Structures.
    Zhang D; Qiu D; Chen Y; Wang R; Zhu L; Wang P; Ming H; Badugu R; Stella U; Descrovi E; Lakowicz JR
    J Phys Chem C Nanomater Interfaces; 2019 Jan; 123(2):1413-1420. PubMed ID: 31681454
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.