These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 34675451)

  • 21. Regional Analysis of Nitrogen Flow within the Chesapeake Bay Watershed Food Production Chain Inclusive of Trade.
    Mohammadpour P; Grady C
    Environ Sci Technol; 2023 Mar; 57(11):4619-4631. PubMed ID: 36889680
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modeling atmospheric nitrogen deposition and transport in the Chesapeake Bay watershed.
    Sheeder SA; Lynch JA; Grimm J
    J Environ Qual; 2002; 31(4):1194-206. PubMed ID: 12175037
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Conowingo Reservoir Sedimentation and Chesapeake Bay: State of the Science.
    Cerco CF
    J Environ Qual; 2016 May; 45(3):882-6. PubMed ID: 27136154
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pathogen reduction co-benefits of nutrient best management practices.
    Richkus J; Wainger LA; Barber MC
    PeerJ; 2016; 4():e2713. PubMed ID: 27904807
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Integration of SWAT and HSPF for Simulation of Sediment Sources in Legacy Sediment-Impacted Agricultural Watersheds.
    Yonce HN; Keeley A; Canfield TJ; Butcher JB; Paul MJ
    J Am Water Resour Assoc; 2019 Apr; 55(2):497-510. PubMed ID: 32704230
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Projections of the future occurrence, distribution, and seasonality of three
    Muhling BA; Jacobs J; Stock CA; Gaitan CF; Saba VS
    Geohealth; 2017 Sep; 1(7):278-296. PubMed ID: 32158993
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chesapeake Bay eutrophication: scientific understanding, ecosystem restoration, and challenges for agriculture.
    Boesch DF; Brinsfield RB; Magnien RE
    J Environ Qual; 2001; 30(2):303-20. PubMed ID: 11285890
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Long-term reductions in anthropogenic nutrients link to improvements in Chesapeake Bay habitat.
    Ruhl HA; Rybicki NB
    Proc Natl Acad Sci U S A; 2010 Sep; 107(38):16566-70. PubMed ID: 20823243
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Estrogenic activity response to best management practice implementation in agricultural watersheds in the Chesapeake Bay watershed.
    Gordon S; Wagner T; Smalling K; Devereux O
    J Environ Manage; 2023 Jan; 326(Pt A):116734. PubMed ID: 36384057
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Factors driving nutrient trends in streams of the Chesapeake Bay watershed.
    Ator SW; Blomquist JD; Webber JS; Chanat JG
    J Environ Qual; 2020 Jul; 49(4):812-834. PubMed ID: 33016477
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Watershed export of fine sediment, organic carbon, and chlorophyll-a to Chesapeake Bay: Spatial and temporal patterns in 1984-2016.
    Zhang Q; Blomquist JD
    Sci Total Environ; 2018 Apr; 619-620():1066-1078. PubMed ID: 29734585
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Impact of environmental policies on the adoption of manure management practices in the Chesapeake Bay watershed.
    Savage JA; Ribaudo MO
    J Environ Manage; 2013 Nov; 129():143-8. PubMed ID: 23916836
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chesapeake Bay Dissolved Oxygen Criterion Attainment Deficit: Three Decades of Temporal and Spatial Patterns.
    Zhang Q; Tango PJ; Murphy RR; Forsyth MK; Tian R; Keisman J; Trentacoste EM
    Front Mar Sci; 2018; 5():. PubMed ID: 31534947
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An integrated multi-level watershed-reservoir modeling system for examining hydrological and biogeochemical processes in small prairie watersheds.
    Zhang H; Huang GH; Wang D; Zhang X; Li G; An C; Cui Z; Liao R; Nie X
    Water Res; 2012 Mar; 46(4):1207-24. PubMed ID: 22212883
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modeling drivers of phosphorus loads in Chesapeake Bay tributaries and inferences about long-term change.
    Ryberg KR; Blomquist JD; Sprague LA; Sekellick AJ; Keisman J
    Sci Total Environ; 2018 Mar; 616-617():1423-1430. PubMed ID: 29102189
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Application of the benthic index of biotic integrity to environmental monitoring in Chesapeake Bay.
    Llansó RJ; Dauer DM; Vølstad JH; Scott LC
    Environ Monit Assess; 2003; 81(1-3):163-74. PubMed ID: 12620013
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Organic matter remineralization predominates phosphorus cycling in the mid-Bay sediments in the Chesapeake Bay.
    Joshi SR; Kukkadapu RK; Burdige DJ; Bowden ME; Sparks DL; Jaisi DP
    Environ Sci Technol; 2015 May; 49(10):5887-96. PubMed ID: 25633477
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Resolving spatiotemporal characteristics of the seasonal hypoxia cycle in shallow estuarine environments of the Severn River and South River, MD, Chesapeake Bay, USA.
    Muller AC; Muller DL; Muller A
    Heliyon; 2016 Sep; 2(9):e00157. PubMed ID: 27699278
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A hydrologic network supporting spatially referenced regression modeling in the Chesapeake Bay Watershed.
    Brakebill JW; Preston SD
    Environ Monit Assess; 2003; 81(1-3):73-84. PubMed ID: 12620006
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Data synthesis for environmental management: A case study of Chesapeake Bay.
    Orth RJ; Dennison WC; Wilcox DJ; Batiuk RA; Landry JB; Gurbisz C; Keisman J; Hannam M; Lefcheck JS; Murphy RR; Moore KA; Patrick CJ; Testa JM; Weller DE; Merritt MF; Hobaugh P
    J Environ Manage; 2022 Nov; 321():115901. PubMed ID: 35998533
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.