BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 34675906)

  • 1. Nutrient Inputs Stimulate Mercury Methylation by Syntrophs in a Subarctic Peatland.
    Roth S; Poulin BA; Baumann Z; Liu X; Zhang L; Krabbenhoft DP; Hines ME; Schaefer JK; Barkay T
    Front Microbiol; 2021; 12():741523. PubMed ID: 34675906
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Periphyton and Flocculent Materials Are Important Ecological Compartments Supporting Abundant and Diverse Mercury Methylator Assemblages in the Florida Everglades.
    Bae HS; Dierberg FE; Ogram A
    Appl Environ Microbiol; 2019 Jul; 85(13):. PubMed ID: 31028023
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unravelling biogeochemical drivers of methylmercury production in an Arctic fen soil and a bog soil.
    Zhang L; Philben M; Taş N; Johs A; Yang Z; Wullschleger SD; Graham DE; Pierce EM; Gu B
    Environ Pollut; 2022 Apr; 299():118878. PubMed ID: 35085651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon Amendments Alter Microbial Community Structure and Net Mercury Methylation Potential in Sediments.
    Christensen GA; Somenahally AC; Moberly JG; Miller CM; King AJ; Gilmour CC; Brown SD; Podar M; Brandt CC; Brooks SC; Palumbo AV; Wall JD; Elias DA
    Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anaerobic guilds responsible for mercury methylation in boreal wetlands of varied trophic status serving as either a methylmercury source or sink.
    Schaefer JK; Kronberg RM; Björn E; Skyllberg U
    Environ Microbiol; 2020 Sep; 22(9):3685-3699. PubMed ID: 32558127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impacts of experimental alteration of water table regime and vascular plant community composition on peat mercury profiles and methylmercury production.
    Haynes KM; Kane ES; Potvin L; Lilleskov EA; Kolka RK; Mitchell CPJ
    Sci Total Environ; 2019 Sep; 682():611-622. PubMed ID: 31129544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Permafrost Thaw Increases Methylmercury Formation in Subarctic Fennoscandia.
    Tarbier B; Hugelius G; Kristina Sannel AB; Baptista-Salazar C; Jonsson S
    Environ Sci Technol; 2021 May; 55(10):6710-6717. PubMed ID: 33902281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Syntrophs dominate sequences associated with the mercury methylation-related gene hgcA in the water conservation areas of the Florida Everglades.
    Bae HS; Dierberg FE; Ogram A
    Appl Environ Microbiol; 2014 Oct; 80(20):6517-26. PubMed ID: 25107983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amendments of nitrogen and sulfur mitigate carbon-promoting effect on microbial mercury methylation in paddy soils.
    Li Y; Dai SS; Zhao J; Hu ZC; Liu Q; Feng J; Huang Q; Gao Y; Liu YR
    J Hazard Mater; 2023 Apr; 448():130983. PubMed ID: 36860084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust Mercury Methylation across Diverse Methanogenic Archaea.
    Gilmour CC; Bullock AL; McBurney A; Podar M; Elias DA
    mBio; 2018 Apr; 9(2):. PubMed ID: 29636434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Syntrophic pathways for microbial mercury methylation.
    Yu RQ; Reinfelder JR; Hines ME; Barkay T
    ISME J; 2018 Jun; 12(7):1826-1835. PubMed ID: 29599522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of a key Hg methylation gene, hgcA, in wetland soils.
    Schaefer JK; Kronberg RM; Morel FM; Skyllberg U
    Environ Microbiol Rep; 2014 Oct; 6(5):441-7. PubMed ID: 25646534
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    Tada Y; Marumoto K; Takeuchi A
    Front Microbiol; 2020; 11():1369. PubMed ID: 32719662
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of disturbance and vegetation type on total and methylmercury in boreal peatland and forest soils.
    Braaten HFV; de Wit HA
    Environ Pollut; 2016 Nov; 218():140-149. PubMed ID: 27552047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of the microbial community structure by monitoring an Hg methylation gene (hgcA) in paddy soils along an Hg gradient.
    Liu YR; Yu RQ; Zheng YM; He JZ
    Appl Environ Microbiol; 2014 May; 80(9):2874-9. PubMed ID: 24584244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mercury methylation and sulfate reduction rates in mangrove sediments, Rio de Janeiro, Brazil: The role of different microorganism consortia.
    Correia RRS; Guimarães JRD
    Chemosphere; 2017 Jan; 167():438-443. PubMed ID: 27750167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbial communities mediating net methylmercury formation along a trophic gradient in a peatland chronosequence.
    Wang B; Hu H; Bishop K; Buck M; Björn E; Skyllberg U; Nilsson MB; Bertilsson S; Bravo AG
    J Hazard Mater; 2023 Jan; 442():130057. PubMed ID: 36179622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and Validation of Broad-Range Qualitative and Clade-Specific Quantitative Molecular Probes for Assessing Mercury Methylation in the Environment.
    Christensen GA; Wymore AM; King AJ; Podar M; Hurt RA; Santillan EU; Soren A; Brandt CC; Brown SD; Palumbo AV; Wall JD; Gilmour CC; Elias DA
    Appl Environ Microbiol; 2016 Oct; 82(19):6068-78. PubMed ID: 27422835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mercury methylation by the methanogen Methanospirillum hungatei.
    Yu RQ; Reinfelder JR; Hines ME; Barkay T
    Appl Environ Microbiol; 2013 Oct; 79(20):6325-30. PubMed ID: 23934484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of methylmercury by methanogens in mercury contaminated estuarine sediments.
    Wang Y; Roth S; Schaefer JK; Reinfelder JR; Yee N
    FEMS Microbiol Lett; 2020 Dec; 367(23):. PubMed ID: 33242089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.