These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 34675966)

  • 1. Major Reorganization of Chromosome Conformation During Muscle Development in Pig.
    Marti-Marimon M; Vialaneix N; Lahbib-Mansais Y; Zytnicki M; Camut S; Robelin D; Yerle-Bouissou M; Foissac S
    Front Genet; 2021; 12():748239. PubMed ID: 34675966
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reorganization of chromosome architecture in replicative cellular senescence.
    Criscione SW; De Cecco M; Siranosian B; Zhang Y; Kreiling JA; Sedivy JM; Neretti N
    Sci Adv; 2016 Feb; 2(2):e1500882. PubMed ID: 26989773
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D disorganization and rearrangement of genome provide insights into pathogenesis of NAFLD by integrated Hi-C, Nanopore, and RNA sequencing.
    Xu L; Yin L; Qi Y; Tan X; Gao M; Peng J
    Acta Pharm Sin B; 2021 Oct; 11(10):3150-3164. PubMed ID: 34729306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding 3D Genome Organization and Its Effect on Transcriptional Gene Regulation Under Environmental Stress in Plant: A Chromatin Perspective.
    Kumar S; Kaur S; Seem K; Kumar S; Mohapatra T
    Front Cell Dev Biol; 2021; 9():774719. PubMed ID: 34957106
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methods for the Differential Analysis of Hi-C Data.
    Nicoletti C
    Methods Mol Biol; 2022; 2301():61-95. PubMed ID: 34415531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microscopy-Based Chromosome Conformation Capture Enables Simultaneous Visualization of Genome Organization and Transcription in Intact Organisms.
    Cardozo Gizzi AM; Cattoni DI; Fiche JB; Espinola SM; Gurgo J; Messina O; Houbron C; Ogiyama Y; Papadopoulos GL; Cavalli G; Lagha M; Nollmann M
    Mol Cell; 2019 Apr; 74(1):212-222.e5. PubMed ID: 30795893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Topologically associating domains are stable units of replication-timing regulation.
    Pope BD; Ryba T; Dileep V; Yue F; Wu W; Denas O; Vera DL; Wang Y; Hansen RS; Canfield TK; Thurman RE; Cheng Y; Gülsoy G; Dennis JH; Snyder MP; Stamatoyannopoulos JA; Taylor J; Hardison RC; Kahveci T; Ren B; Gilbert DM
    Nature; 2014 Nov; 515(7527):402-5. PubMed ID: 25409831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational Analysis of Hi-C Data.
    Forcato M; Bicciato S
    Methods Mol Biol; 2021; 2157():103-125. PubMed ID: 32820401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TADs are 3D structural units of higher-order chromosome organization in
    Szabo Q; Jost D; Chang JM; Cattoni DI; Papadopoulos GL; Bonev B; Sexton T; Gurgo J; Jacquier C; Nollmann M; Bantignies F; Cavalli G
    Sci Adv; 2018 Feb; 4(2):eaar8082. PubMed ID: 29503869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The nuclear matrix protein HNRNPU maintains 3D genome architecture globally in mouse hepatocytes.
    Fan H; Lv P; Huo X; Wu J; Wang Q; Cheng L; Liu Y; Tang QQ; Zhang L; Zhang F; Zheng X; Wu H; Wen B
    Genome Res; 2018 Feb; 28(2):192-202. PubMed ID: 29273625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reorganization of 3D chromatin architecture in doxorubicin-resistant breast cancer cells.
    Wang X; Yan J; Ye Z; Zhang Z; Wang S; Hao S; Shen B; Wei G
    Front Cell Dev Biol; 2022; 10():974750. PubMed ID: 36003143
    [No Abstract]   [Full Text] [Related]  

  • 12. Structural organization of the inactive X chromosome in the mouse.
    Giorgetti L; Lajoie BR; Carter AC; Attia M; Zhan Y; Xu J; Chen CJ; Kaplan N; Chang HY; Heard E; Dekker J
    Nature; 2016 Jul; 535(7613):575-9. PubMed ID: 27437574
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Principles of Chromosome Architecture Revealed by Hi-C.
    Eagen KP
    Trends Biochem Sci; 2018 Jun; 43(6):469-478. PubMed ID: 29685368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural heterogeneity and functional diversity of topologically associating domains in mammalian genomes.
    Wang XT; Dong PF; Zhang HY; Peng C
    Nucleic Acids Res; 2015 Sep; 43(15):7237-46. PubMed ID: 26150425
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Capturing Chromosome Conformation Across Length Scales.
    Yang L; Akgol Oksuz B; Dekker J; Gibcus JH
    J Vis Exp; 2023 Jan; (191):. PubMed ID: 36744801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinct structural transitions of chromatin topological domains correlate with coordinated hormone-induced gene regulation.
    Le Dily F; Baù D; Pohl A; Vicent GP; Serra F; Soronellas D; Castellano G; Wright RH; Ballare C; Filion G; Marti-Renom MA; Beato M
    Genes Dev; 2014 Oct; 28(19):2151-62. PubMed ID: 25274727
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial Principles of Chromatin Architecture Associated With Organ-Specific Gene Regulation.
    Chapski DJ; Rosa-Garrido M; Hua N; Alber F; Vondriska TM
    Front Cardiovasc Med; 2018; 5():186. PubMed ID: 30697540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microrheology for Hi-C Data Reveals the Spectrum of the Dynamic 3D Genome Organization.
    Shinkai S; Sugawara T; Miura H; Hiratani I; Onami S
    Biophys J; 2020 May; 118(9):2220-2228. PubMed ID: 32191860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of the 3D Genome Organization of Bacteria Using Hi-C.
    Crémazy FG; Rashid FM; Haycocks JR; Lamberte LE; Grainger DC; Dame RT
    Methods Mol Biol; 2018; 1837():3-18. PubMed ID: 30109602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reorganization of 3D genome architecture across wild boar and Bama pig adipose tissues.
    Zhang J; Liu P; He M; Wang Y; Kui H; Jin L; Li D; Li M
    J Anim Sci Biotechnol; 2022 Mar; 13(1):32. PubMed ID: 35277200
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.